2) third initial boundary value problem
第三初边值问题
1.
The existence and uniqueness of the local classical solution of the third initial boundary value problem for the equation u tt-αu xx-βu xxtt=φ(u x) x are proved by making use of the contraction mapping principal.
利用压缩映射原理证明了方程utt-αutt-βuxxtt=φ( ux) x的第三初边值问题局部古典解的存在性和惟一性 。
4) second boundary value problem
第二边值问题
1.
In this paper, we study a class of pseudoulinear second boundary value problem of x"=αx+f(t,x),x(0)=a,x(1)=b.
本文在f(t,x),fx(t,x),β(t)连续,fx(t,x)≥-β(t),β(t)≤π20+α24,β(t)π20+α24,π0为方程αsinx2+xcosx2=0的最小正根条件下,证明了第二边值问题。
5) initial boundary problem
初边值问题
1.
We consider the initial boundary problem for a class of nonlinear schrodinger equations with effect of dissipation and magnectic: i■_■=△■+q(|■|~2)■+η■×(■+■)-1/2γ(t)■.
的初边值问题,在适当的条件下得到了解的blow-up性质。
2.
In this paper we prove the strong asymptotic stability of global solution to the initial boundary problem for nonlinear degenerate wave equation by means of the method in M.
Aassila[5]的方法证明了一类非线性退化波方程初边值问题整体解的强渐近稳定性。
3.
We prove the asymptotic behavior of initial boundary problem for a class of quasilinear wave equation by energy method.
利用一个特殊的积分不等式得到一类拟线性波动方程初边值问题解的渐近性。
6) initial-boundary value problem
初边值问题
1.
Separation of variables method for fractional diffusion-wave equation with initial-boundary value problem in three dimensions;
分离变量法解三维的分数阶扩散-波动方程的初边值问题
2.
Structure of global weak entropy solution for initial-boundary value problems of scalar conservation laws with non-convexity conditions;
具有非凸条件的单个守恒律初边值问题整体弱熵解的结构
3.
This paper studies the Blow-up behavior of the initial-boundary value problem for the nonlinear reaction-diffusion equation: u_t= Δ u+f(u) , and proves that the smooth solutions can only exist in a limited extent of time.
研究了非线性反应扩散方程ut=Δu+f(u)初边值问题的解的Blow up问题,证明了其光滑解只能在一个有界区间内存在。
补充资料:第二边值问题
第二边值问题
second boundary value problem
第二边值问题【sec.目掀习白ry,al.声滋触m;盯op明即皿.二3叭明a] 偏微分方程边值问题(boundary词ue prob】。n,part达1 di价rentiale平以ions)之一例如,设Q是一有界区域,其边界r的每个点处都有法线,并设在Q中给定了一个二阶椭圆型方程 L。一夕。一‘二仁些丝丝+夕b‘(二)旦卫玉三立+ t界l‘’oxi口x]‘百i口x‘ +e(x)。(x)“,f(x),(*)其中x‘(xl,…,x。),。)2;O中的方程(*)的第二边值问题有如下述:从(*)的所有解组成的集合中选出这样的解u(x),它在Q的所有边界点处具有关于内法线N的导数,并满足条件 黑典{一。·,, 刁N(x)},。r其中职(尤)是一给定的函数.第二边值问题也称N七u-~问题(N七urr必nn Probleln).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条