说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矩阵秩分解
1)  rank decomposition
矩阵秩分解
2)  decomposition formula of ma trix maximum rank
矩阵的最大秩分解式
3)  Matrix Decomposition
矩阵分解
1.
Packet scheduling based on matrix decomposition in optical switches;
基于矩阵分解的光交换机分组调度算法
2.
Direction finding in the presence of coherent signals based on data matrix decomposition;
基于数据矩阵分解的相干源方向估计新方法
3.
In order to solve the problem of inverse kinematics for general 6R robots,an algorithm with high accuracy based on symbolic preprocessing and matrix decomposition was proposed.
为解决一般6R机器人的逆运动学问题,提出一种基于符号运算和矩阵分解的高精度逆运动学算法。
4)  decomposing matrix
分解矩阵
1.
Through using matrix to store intermediate variabl es, analyzing the decomposing matrix and certifying the result by rotation matri x, the parameters of Transform Node were gained.
方法的原理是 :用矩阵记录中间过程 ,通过分析分解矩阵 ,获得与Transform节点对应的参数 。
5)  matrix factorization
矩阵分解
1.
The numerical techniques for modifying the matrix factorizations are studied in detail when a constraint is added or deleted, which can avoid the singularities of positive semidefinite matrix and keep the algorithm′s numerical stability.
针对非光滑优化中捆集算法之二次规划子问题数值求解的困难 ,详细研究了求解半正定二次规划问题的积极法 ,提出了一系列矩阵分解的存储方法和校正方法 ,较好地克服了半正定矩阵奇异性带来的数值求解的困难 ,在求解捆集算法的半正定二次规划子问题中取得了很好的效果 ,所提出的算法具有较强的实用
2.
A determinant inequality of column full rank matrices is proved and some applications in matrix factorization of special matrices are presented.
本文给出行(列)满秩矩阵的几个等价刻画,讨论这两类矩阵之间的关系,证明了一个列满秩矩阵的行列式不等式,并指出这两类矩阵在几类特殊矩阵分解方面的若干应用。
3.
3bNMF is applied to digital matrix factorization and base structure extraction respectively from Chinese characters with noise.
在普通非负矩阵分解(NMF)方法基础上提出了3个二进制约束非负矩阵分解(3bNMF)算法,对分解矩阵和恢复矩阵元素增加了二进制数的约束,从而更适合对二进制数据进行处理。
6)  rank of matrix
矩阵的秩
1.
By means of the rank of matrix, line outspreading, it gives some conditions in which a matrix can decompose to two Kronecker products of matrix.
对矩阵Kronecker积分解进行研究,通过矩阵的秩,行展开等方法,给出了将一个矩阵分解为两个矩阵Kronecker积的若干条件。
2.
In this note,we describe the equivalent propositions on the rank of matrix by determinants,equivalent of matrix,system of linear equations,linear space,linear mapping and so on.
从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题。
3.
Necessary and sufficient conditions for the Frobenius inequality of rank of matrix to be equality are dicussed in this paper,and the characterization of rank of a class of matrix is characterized.
讨论了矩阵秩的Frobenius不等式取等号的充分必要条件,刻画了一类矩阵的秩特征。
补充资料:誾誾秩秩
1.人才众多貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条