1) Quasi decay
拟渐近性
3) quasi-asymptotic directions
拟渐近方向
1.
entring on the rate of normal curvature, a method for analyzing constructions of the surfaces near to planar point by introducing the concepts of even planar points, odd planar points, quasi-asymptotic directions and quasi-Dupin indicatrix, etc.
以曲面在平点的法曲率变化率为中心,通过引进偶平点、奇平点、拟渐近方向、拟杜邦指标线等概念,给出了分析曲面在平点邻近结构的一种方法。
4) asymptotic approximation
渐近性近似
5) asymptotic behavior
渐近性态
1.
The asymptotic behavior of solutions for a class of delay differential systems was studied.
研究了一类时滞微分系统解的渐近性态。
2.
Under suitable conditions,using the theory of differential inequalities,the existence and asymptotic behavior of solution for the boundary value problems are studied.
适当的条件下 ,利用微分不等式理论 ,讨论了原边值问题解的存在性和渐近性态。
3.
Under suitable conditions,and by using the theory of differential inequalities, the existence and asymptotic behavior of solution for the boundary value problems are studied.
在适当的条件下,利用微分不等式理论,讨论了该边值问题解的存在性和渐近性态,给出了渐近估计式:u0(x)-Ui0(xε)-u0(0)+O(ε)≤u(x,ε)≤u0(x)+O(ε),0≤x≤1。
6) Asymptotic Behavior
渐近性
1.
The Asymptotic Behavior and Existence of The Global Solution for the Systems of Phosphorus Diffusion in Silicon;
硅体中磷反应扩散系统解的整体存在性及渐近性
2.
Oscillation and asymptotic behavior of several delays difference equations with impulses;
具有脉冲的多时滞差分方程的振动性与渐近性
3.
Oscillatory and asymptotic behavior of solutions for third order impulsive delay differential equations;
三阶脉冲时滞微分方程解的振动性与渐近性
补充资料:渐近等分性
随机变量长序列的一种重要特性,是编码定理的理论基础,简称AEP。当随机变量的序列足够长时,其中一部分序列就显现出一种典型的性质:这些序列中各个符号的出现频数非常接近于各自的出现概率,而这些序列的概率则趋近于相等,且它们的和非常接近于1,这些序列就称为典型序列。其余的非典型序列的出现概率之和接近于零。序列的长度越长,典型序列的总概率越接近于1,它的各个序列的出现概率越趋于相等。渐近等分性即因此得名。
C.E.仙农最早发现随机变量长序列的渐近等分性,并在1948年发表的论文《通信的数学理论》中把它表述为一个定理。后来,B.麦克米伦在1953年发表的《信息论的基本定理》一文中严格地证明了这一结果,因此,有人也把它称为麦克米伦定理。
渐近等分性有许多不同的具体形式,但一般地可以表述如下:若X是一个符号表,共有M个不同的符号x1,x2,...,xM ,它们的出现概率分别是p1,p2,...,pM 。对X进行N次独立的选择,于是得到一个长度为N的符号序列;总共有MN个长度为N的不同序列。可以证明,对于给定的两个任意小的数ε>0和δ>0,一定可以找到一个正整数N0(它是X,ε和δ的某种函数),使所有长度为N≥N0的序列可划分为以下两组。第一组包含Aε<MN个序列,其中各个序列都具有几乎相等的出现概率p,且有
1-ε<p·Aε<1
和
式中H是X的符号熵。实际上,当N充分大时,Aε=2NH。第二组包含其余的MN-Aε个序列,它们的出现概率之和小于ε。显然第一组包含的是典型序列,第二组包含的是非典型序列。在各个符号的概率不相等的情况下,序列长度N越大,则Aε与MN的差别越大,而p·Aε与1的差别越小,-logp/N与H的差别也越小。
渐近等分性的意义在于:对于任意取有限个值的随机变量X,当用N次独立选择的方法来形成编码序列时,只要N 取得足够大,就可以只考虑其中Aε个典型序列,而其余所有的非典型序列均可以忽略。
C.E.仙农最早发现随机变量长序列的渐近等分性,并在1948年发表的论文《通信的数学理论》中把它表述为一个定理。后来,B.麦克米伦在1953年发表的《信息论的基本定理》一文中严格地证明了这一结果,因此,有人也把它称为麦克米伦定理。
渐近等分性有许多不同的具体形式,但一般地可以表述如下:若X是一个符号表,共有M个不同的符号x1,x2,...,xM ,它们的出现概率分别是p1,p2,...,pM 。对X进行N次独立的选择,于是得到一个长度为N的符号序列;总共有MN个长度为N的不同序列。可以证明,对于给定的两个任意小的数ε>0和δ>0,一定可以找到一个正整数N0(它是X,ε和δ的某种函数),使所有长度为N≥N0的序列可划分为以下两组。第一组包含Aε<MN个序列,其中各个序列都具有几乎相等的出现概率p,且有
1-ε<p·Aε<1
和
式中H是X的符号熵。实际上,当N充分大时,Aε=2NH。第二组包含其余的MN-Aε个序列,它们的出现概率之和小于ε。显然第一组包含的是典型序列,第二组包含的是非典型序列。在各个符号的概率不相等的情况下,序列长度N越大,则Aε与MN的差别越大,而p·Aε与1的差别越小,-logp/N与H的差别也越小。
渐近等分性的意义在于:对于任意取有限个值的随机变量X,当用N次独立选择的方法来形成编码序列时,只要N 取得足够大,就可以只考虑其中Aε个典型序列,而其余所有的非典型序列均可以忽略。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条