说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 数学特征
1)  numerical characteristics
数学特征
1.
In this paper, the density function of p distribution of observational errors is derived in detail, and discussed the dispersion, numerical characteristics and estimation criterion of p distribution, described the relation between the error distribution and estimation method.
本文导出了观测误差服从一族指数分布──p分布的密度函数,讨论了p分布的离差、数学特征和估计准则等问题,描述了误差分布与估计方法的关系,有利于进一步讨论估计方法的抗差性。
2)  mathematical property set
数学特征方程
1.
In order to properly understand the mathematical model of stress-strain relationships of frozen soil,strength index is defined and employed to establish mathematical property sets of two traditional stress-strain models,namely hyperbolic model and exponential model.
结果研究表明,两种传统模型的数学特征方程均不独立;在初始切线模量和最终强度分别相同的情况下,双曲线模型的强度因子大于指数曲线模型的强度因子,双曲线模型的收敛速度小于指数模型的收敛速度。
3)  features of m athematical Mod-eling
数学建模特征
4)  math-morphological features
数学形态特征
1.
Double standard deviation analysis with 11 math-morphological features (MMFs) ( such as area, perimeter, etc.
在科分类阶元上对半翅目、鳞翅目和鞘翅目8个科的23种昆虫图像中提取的昆虫面积、周长等11项数学形态特征进行了双重标准差法分析,以评估该方法在昆虫科阶元分类上的应用有效性。
2.
Based on 7 math-morphological features (MMFs), such as form parameter, lobation, sphericity, etc.
本文根据昆虫图像,对半翅目、鳞翅目、鞘翅目的28种昆虫提取的形状参数、叶状性、球状性等7项数学形态特征进行了粗糙集模糊聚类分析。
5)  biological characteristic coefficient
生物学特征系数
1.
To realize the biomass transformation between different tree species,this paper demonstrates the definition of biological characteristic coefficient of trees,selects the Pinus tabulaeformis as the standard tree,and uses the formula to estimate the trunk biomass of P.
为了实现不同树种之间的生物量转换,该文叙述了林木生物学特征系数KB的定义,并选择油松作为基准树种,用油松的生物量的计算公式,计算小陇山10个树种之样木的伪生物量W0i,并将伪生物量W0i与相应的实测生物量Wi建立回归关系;通过回归计算,得出油松对白桦、红桦、华山松、椋子、辽东栎、日本落叶松、锐齿栎、栓皮栎、油松和云杉的树干生物量的转换系数^KB分别为1。
6)  feature of mathematics language
数学语言的特征
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条