1) C metric
C度规
1.
By using a limit process, the space time metric of an infinitesimal neighborhood nearby the horizon of an infinite Reissuer-Nordstrom black hole is obtained and it is proved that it is a vacuum C metric when mass is equal to zero, namely it is a Rindler metric.
用极限方法得到无限大Reissner-Nordstrom(R-N)黑洞视界无限小邻域的时空度规,并证明这个度规是质量为零的真空C度规,也就是Rindler度规。
3) C-normal
C-正规
1.
The influence of c-normal subgroup on the structure of super solvable group
c-正规子群对超可解群结构的影响
2.
The C-normal subgroup was firstly presented and used to discuss the structure of finite group.
C-正规子群第一次被提出并被用来讨论了有限群的结构,之后得到人们的广泛关注。
3.
In this paper, the starting point is researching the solvability, in the base ofthe conclusions,Combining Sylow-subgroups, Hall-subgroups, conjugate-permutablesubgroups and c-normal groups.
本文的出发点就是在这些结论的基础上结合Sylow子群、Hall子群、共轭置换子群、c-正规子群等对有限群的可解性进行研究,得到以下主要结论: (1)若G的Sylow 2-子群为交换群,且对G的任意Sylow 2-子群Q(Q≠P),P∩Q在P中极大,则G为可解群。
4) E C A rule
E-C-A规则
5) c-normality
c-正规
1.
c-normality and p-nilpotency of Finite Groups;
c-正规与有限群的p-幂零性
2.
In this paper,we research the effect of c-normality on supersolvablity and solvability,and get some good results:if M is a normal subgroup of G and every sylow subgroup of M is c-niomal in G, then G is supersolvable;let M be normal and maximal in G, if every subgroup of prime order is c-normal in G,and every Frattini subgroup of sylow subgroups in G is 1.
我们运用C-正规性质来刻画群的可解性和超可解性,并得到了一些很好的结论:设M为群G的一个极大子群,若M的任一Sylow子群在G中C-正规,则G超可解;MG,且为G之极大子群,M的每一个素数阶子群在G中C-正规及M的任何Sylow子群的Frattini子群为1,则G超可解。
3.
And if all Sylow subgroups of A and B are semi-normality in G,then G is supersolvable;if G is finite group,then N G,G/N is supersolvable;if all prime subgroups of N include in U(G),and all 22 steppes of circulation subgroup of N are semi-normality or C-normality in group G,then G is supersolvab.
利用某些半正规或 C-正规子群刻划有限群的结构 ,得到有限群超可解的若干充分条件 :设有限群 G =AB,其中 A≤ G,B≤ G。
6) C-Programming
C-规划
1.
Quasi Parameter-Direct Method for a Class of C-Programming;
解一类C-规划问题的拟参数-直接法
补充资料:度规
给定时空中两个相邻事件间的时空线元,又称度量。有长度定义的空间叫度量空间,度量空间中坐标差为dxμ的两点间的距离(线元)ds用下式表示:
式中gμv 叫度规(系数),它是一个张量,故又叫度规张量。给定度规张量,空间的度量性质就完全确定了。例如,三维欧氏空间用直角坐标表示时,两点间距离的平方为:
ds2=(dx1)2+(dx2)2+(dx3)2,其度规张量为:
而用球坐标表示时为:
ds2=(dr)2+r2(dθ)2+r2sin2θ(d嗞)2,其度规张量为:
有时又把用度规张量具体表示的 ds2的表达式称为度规,例如四维闵可夫斯基时空任两点间的线元平方值为:
ds2=(dx1)2+(dx2)2+(dx3)2-(dx4)2,式中dx4=cdt,ds2表示式称为闵可夫斯基度规。度规张量为:
式中gμv 叫度规(系数),它是一个张量,故又叫度规张量。给定度规张量,空间的度量性质就完全确定了。例如,三维欧氏空间用直角坐标表示时,两点间距离的平方为:
ds2=(dx1)2+(dx2)2+(dx3)2,其度规张量为:
而用球坐标表示时为:
ds2=(dr)2+r2(dθ)2+r2sin2θ(d嗞)2,其度规张量为:
有时又把用度规张量具体表示的 ds2的表达式称为度规,例如四维闵可夫斯基时空任两点间的线元平方值为:
ds2=(dx1)2+(dx2)2+(dx3)2-(dx4)2,式中dx4=cdt,ds2表示式称为闵可夫斯基度规。度规张量为:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条