1) Noncompact simple Lie groups
非紧单李群
2) semisimple compact Lie group
半单紧李群
3) Compact Lie group
紧李群
1.
In this paper,we gave the definitions of tempered distributions on compact Lie group,and studied their properties.
给出紧李群G上缓变广义函数的定义,研究它们的一系列性质及其在富立叶分析中的应用,得出了一系列与欧氏空间相平行的结果。
2.
In this paper,we studied the Fourier transform of a function in L1(G),where G is a compact Lie group.
在紧致李群G的第二标准坐标系的基础上,给出了紧李群上富立叶变换定义,研究了它的性质,给出了富立叶变换反演问题的
4) compact Lie group
紧致李群
5) noncompact real simple Lie algebras
非紧实单纯李代数
6) compact connected Lie group
紧连通李群
补充资料:群代数(局部紧群的)
群代数(局部紧群的)
roup algebra (of a locally compact group)
群代数(局部紧群的)「粤议甲吻曲.(o f a hcany com-Pact邵旧up):rPy。。oaa:a月re6Pa(二o二a月‘。06。二oM-na盯uo‘rpyunu)1 群上某些函数以卷积为乘法构成的具有对合(m城〕-lution)的拓扑代数设Banach空间Ll(G)是局部紧拓扑群G上用左不变H曰叮测度(H斑灯In已迢眠)匆所构造的,设乌(G)中之乘法由卷积认,关)~关*关所定义,又设对合f~f‘由公式厂幼二了而币△切所定义,其中么为G的模函数,所得到的具有对合的山.山代数(现班理h司罗bra)称为G的群代数(脚叩减罗bra),仍用乌(G)记之.若G为有限群,则群代数的定义和通常复数域上群代数(grouPa】gebra)的代数定义是一致的. 群代数的概念使得在群论的问题中,特别是在抽象调和分析中,能够使用B出.ch代数理论的一般方法.群代数作为E以na£h代数,它的性质反映了拓扑群的性质;比如群代数包含单位元素,当且仅当此群为离散的;群代数为它的有限维极小双边理想之直接(拓扑)和,当且仅当此群是紧的.特别,在群的酉表示(四itaryreP心entation)论中群代数概念具有特别重要的地位:在拓扑群G的连续酉表示和群代数L、(G)的非退化对称表示(见对合表示(jn如lution卿代以泊扭石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条