说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> VB方程
1)  variant Boussinesq equations
VB方程
1.
The solitary wave solutions of two types of variant Boussinesq equations are obtained by a simple and efficient method based on the homogeneous balance method.
用一种建立在齐次平衡法基础上的直接方法 ,解得了两种VB方程的孤波
2)  nonlinear coupled VB equations
非线性耦合VB方程组
1.
By constructing auxiliary functions,some new exact traveling wave solutions of the nonlinear coupled VB equations are obtained,which include solitary wave solutions,trigonometric function solutions,Jacobian elliptic function solutions and rational solutions,and some solutions are complex linear solutions.
利用构造辅助函数的方法,给出了非线性耦合VB方程组的某些新的精确行波解,包括孤子解、三角函数解、椭圆函数解和幂函数解,其中某些解还是复线型的。
3)  VB program
VB程序
1.
The design of VB program for simulating the functions of 500-Model multimeter;
万用表功能模拟VB程序设计
2.
Probing and Analysis on VB Program s Method of Debugging and Error Trapping;
VB程序的调试方法和错误捕获探析
3.
VB program design application in highway transitional curve calculation
VB程序设计在公路缓和曲线计算中的应用
4)  VB programming
VB编程
1.
Realization of VB programming for calculating the position of antenna of satellite earth station on a global scale;
全球地卫天线定位的VB编程实现
2.
Use the function of UG parameter expression combing with VB programming, the involute helical gear parametric 3D modeling are implemented.
文章介绍了UG环境下的渐开线斜齿轮的三维建模方法,并通过VB编程利用UG参数表达式功能实现了渐开线斜齿轮三维建模的参数化。
3.
This article described the method of CAFD Menu built-in and graphical user interface(GUI)design in the environment of SolidWorks with the aid of VB programming and SolidWorks API meanwhile.
该文论述了借助VB编程在SolidWorks环境下无缝嵌入CAFD菜单及用户操作界面的设计方法。
5)  VB
VB编程
6)  VB program
Vb编程
1.
Analysis of numerical value of the capacity of grain refrigerator and compute by VB program;
谷物冷却机处理量的数值分析及VB编程计算
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条