说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊结构
1)  fuzzy structures
模糊结构
1.
In this paper, a new finite element analysis method for fuzzy structures is proposed based on the information entropy concept.
本文利用信息熵的概念,将模糊变量转变为随机变量,将模糊结构视为随机结构进行处理,从而提出了模糊结构有限元分析的一种新方法。
2)  double-fuzzy structure
双模糊结构
1.
A double-fuzzy structure power system stabilizer(D-FPSS) was presented ,which can automatically adjust the quantitative factors on-line according to the shortcoming of bad steady state performance of the common fuzzy power system stabilizer(C-FPSS).
为简化计算、获得更快的响应速度,在Matlab的Fuzzy Logic工具箱下利用高木-关野模糊推理算法设计了双模糊结构控制器。
3)  fuzzy variable structure
模糊变结构
1.
Design of three moving massess missile system based on the fuzzy variable structure control;
模糊变结构在三滑块质量矩导弹系统上的应用
2.
In order to have a good performance for maneuvering target tracking,A fuzzy variable structure interacting multiple model(FVSIMM) algorithm based on H∞filter is proposed in this paper.
为提高对机动目标的跟踪效果,本文提出了一种基于H∞滤波的模糊变结构交互多模型算法。
3.
A fuzzy variable structure synchronization controller that insures the global asymptotically stability of TS fuzzy model is designed based on Lyapunov theory.
采用T S模糊动态模型描述Chua混沌系统,用Lyapunov稳定性理论设计出全局渐近稳定的模糊变结构同步控制器。
4)  fuzzy structured element
模糊结构元
1.
Four fundamental operations of fuzzy numbers formed with fuzzy structured element;
模糊结构元线性生成的模糊数运算
2.
By using of fuzzy structured element theory,it is defined that the order-preserving transform of bounded monotone functions on the symmetric interval [-1,1],the expression forms and correspondent membership of the four fundamental operations of fuzzy numbers base on the fuzzy structured element is obtained.
本文运用模糊数的模糊结构元表述理论,引入区间[-1,1]上单调函数的某些同序单调变换,将圆楔复模糊数的乘、除运算转换为同序单调函数之间的相应运算,解决以往基于扩张原理运算中的遍历过程带来极大的不便。
3.
This paper systematic introduced the application of fuzzy structured element method in the fuzzy-valued function analysis.
简述了模糊值函数分析学在具体工程实践应用中存在的困难和障碍,系统地介绍了模糊结构元方法在模糊值函数分析学中的应用,包括模糊结构元的概念、模糊数的模糊结构元表示形式、基于结构元表达形式的模糊数运算与隶属函数确定。
5)  fuzzy structuring element
模糊结构元
1.
Solution algorithm of linear fuzzy ordinary differential equations using fuzzy structuring element
一类线性模糊常微分方程的模糊结构元解法
2.
Will give a new kind of definition of the fuzzy limit by using the methods of fuzzy structuring element .
利用模糊结构元方法给出了模糊极限的一种新的定义,这种形式摒弃了对元素遍历的繁琐运算,使得该定义运用起来更加灵活简便,而且也体现了模糊结构元方法在简化模糊分析计算方面的优越性。
3.
In order to make the expression of the formulas become simple, this paper gives a new kind of expression of the Newton-Leibniz formula by using the method of fuzzy structuring element on the condition that the arith.
为了体现该公式的灵活性,本文在受限算子下,利用模糊结构元理论给出了模糊值函数的Newton-Leibniz公式的一种新的表现形式,这种形式摒弃了对原函数的限制,使得该公式运用起来更加灵活简便,而且具有一定的实际应用价值,同时也体现了模糊结构元理论在简化模糊分析计算方面的优越性,整个公式的给出和证明过程及文章中的实例也说明了这一点。
6)  Varaible structure fuzzy
变结构模糊
补充资料:负债结构与资产结构对应分析


负债结构与资产结构对应分析


【负债结构与资产结构对应分析】 1.负债结构与资产结构的对应分析要点 (l)分析长期资产与长期负债是否平衡 分析指标为长期资产与长期负债的比率,其比值若接近1或等于1,表明长期资产负债对应平衡,双方配置得当。若比值小于1,表明长期资产小于长期负债,长期负债在满足对应资金需求后仍有剩余,这时,应分析剩余资金的数量与去向,若剩余资金数量很大,显然不利于提高银行资金的盈利性,要相应调整资产结构。若其比值大于1,表明长期资产大于长期负债,出现缺口,(这种现象在目前专业我国银行资金营运中比较普遍)这时要从资产负债两方面找出存在资金缺口的原因,可着重分析以下两点:①看购买长期债券与3年以上定期存款是否对应,若前者大于后者,说明用非长期负债购买了长期资产,配置不合理;②看技改贷、基建贷款与3年以上定期存款是否对应,若前者大于后者,说明贷款超来源投放。 (2)分析中期资产与中期负债是否对应平衡 分析指标为中期资产对中期负债的比率,其比值若接近于1或等于1,表明二者之间对应平衡、配置合理。若不等于1,有以下两种情况: ①中期资产与中期负债之比大于1,表明中期资产过多,中期负债不足,要从两方面分析:一看周转贷款+l冶时贷款长期占用部分是否小于或等于向央行年度借款+l庙时借款稳定部分+活期存款稳定部分,若前者大于后者,说明流动资金贷款沉淀过多,缺乏对应来源;二看流动基金贷款是否大于或等于两年以下定期存款,若前者大于后者,说明此项贷款过多,要分析过多的原因。 ②中期资产与中期负债之比小于1,表明中期资产偏少,中期负债有剩余,要分析中期负债剩余的去向。 (3)分析短期资产与短期负债是否对应平衡 分析指标为短期资产对短期负债的比率,其比值若接近或等于1,表明短期资产负债对应平衡、配置合理。若大于1,说明短期资产多于短期负债,短期负债不足,短期资产过多,势必占用中、长期负债来源,提高银行的营运成本。若小于1,说明短期负债多于短期资产,应从以下两方面查找原因: ①从负债方面来看,短期负债与短期资产失衡可能与存款等负债波动性较强有关,故首先要分析存款波动率过大的原因。可从银行内外两方面分析:从内部检查存款增长机制方面存在哪些问题;从外部检查生产、收入、物价、利率、社会心理、消费习惯等因素对存款波动的影响。其次要分析向央行临时借款的稳定性,看是本身资金计划性不强、头寸不均衡所致,还是受央行资金波动的影响。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条