1) matching complex
匹配复形
1.
In this paper graphs′ matching complex is introduced in.
以图G的所有匹配为单形的复形叫做图G的匹配复形 ,记作M(G) 。
2) complex match
复杂匹配
1.
Based on the SF algorithm, an improved schema matching algorithm, Similarity Flooding-Complex (SF-C), is proposed in this paper, which does not only deal with both simple and complex matches semi-automatically, but also apply the technology of lexical analysis that deal with the simple and complex matches respectively and the process is running at the same time.
在SF算法的基础上,提出了一种改进的数据库模式匹配算法Similarity Flooding-Complex(SF-C),它能半自动的处理简单匹配和复杂匹配,而且应用了词法分析技术,对候选匹配进行分类处理,使对简单匹配和复杂匹配的处理同时进行,一定程度上提高了效率。
2.
However,relationships between real-world schemas involve many complex matches besides 1:1 matches.
现有的模式匹配方法大多集中于发掘模式间的1:1匹配,然而,现实世界模式之间除了1:1匹配还包括许多的复杂匹配。
3.
A new system of discovering the complex matches between database schemas called CSM(Complex Schema Matching) is proposed in this paper.
本文提出一种新的发掘数据库模式间复杂匹配的系统构架CSM。
3) Combined matching
复合匹配
4) repeated matching
重复匹配
1.
Based on the idea of repeated matching and clustering arithmetic, the heuristic rules and heuristic algorithm for packing and scheduling problem are put forward.
利用重复匹配算法、聚合算法等启发式方法 ,提出了布局调度操作的启发式规则及相应的启发式算法 。
5) complex matching
复杂匹配
1.
Deep Web complex matching method based on association mining and semantic clustering
基于关联挖掘和语义聚类的Deep Web复杂匹配方法
2.
Secondly, a new semi-automatically approach was exploited to discover both 1:1 and complex matching with the domain knowledge.
其次,在分析传统的数据库模式属性1:1匹配技术基础上,给出一种基于领域知识的数据库模式复杂匹配方法。
补充资料:CW复形
一类拓扑空间。重要性在于许多常见的空间属于这一类;另外同伦论的方法对这类空间能较好地发挥。单纯复形(见拓扑学,同调论)是CW复形的特例。粗略地说,CW复形是由一些(有限多个或无穷多个)胞腔从低维到高维逐层堆积而成的空间。同伦论中往往需要在拓扑空间上定义满足某种条件的连续映射。这对非常一般的拓扑空间来说很难着手。但对于CW复形,则可以从低维到高维,在一个一个胞腔上给出定义,即采用"逐层扩张"的方式得到所需要的连续映射。如果扩张到某一层遇到阻碍,就产生阻碍上闭链,阻碍上同调类等等(见同伦论),这样就能利用同调来讨论关于连续映射的扩张或同伦等问题。
设Χ为豪斯多夫空间,{e}为Χ的一组子空间,α∈Jn(Jn为标号集合),n=0,1,2,...,记并且设下列条件成立:
①
② 蕴涵n=m,α=β;
③ 对任意一对n,α,有连续映射满足同胚地映为 妏,其中Dn为欧氏空间 Rn里的单位球体,Sn-1为 Dn的边界球面。这时称集合 n=0,1,2,...构成空间Χ 的一个胞腔剖分,e(α∈Jn)称为 X 的 n 维胞腔,称为粘贴映射,Χn称为n维骨架。条件①、②、③蕴涵具备了一个胞腔剖分的豪斯多夫空间叫作胞腔复形。
若,则称e为e的一个直接面。e称为e的一个面,如果二者之间可以插入一列有限多个胞腔使得前一个为后一个的直接面。
胞腔复形Χ称为CW复形,假如下列条件满足:
C:闭包有限──每个胞腔只有有限多个面;
W:弱拓扑──子集S嶅Χ 为闭集当而且仅当对一切n,α,S∩e为e中的闭集。
例如,在球面Sn中,任取一点p∈Sn,令e0=p,en=Sn,则Sn剖分成了只含两个胞腔{e0,en}的胞腔复形。
又如,在实射影空间RPn中,有一个由n+1个胞腔e0,e1,...,en构成的胞腔剖分,亦即每个维数恰好有一个胞腔。
上面已经提到,CW复形Χ可看作是逐层粘贴胞腔而得到的:Χ0为若干个点;设Χn-1已粘好,用粘贴映射x将Dn粘贴到Χn-1上得到各个e,从而造出Χn,......。
同一个空间可以有不同的胞腔剖分。一般胞腔剖分比单纯剖分所含有的胞腔总数可以少得多,这是胞腔剖分的一大优点。
设Χ为豪斯多夫空间,{e}为Χ的一组子空间,α∈Jn(Jn为标号集合),n=0,1,2,...,记并且设下列条件成立:
①
② 蕴涵n=m,α=β;
③ 对任意一对n,α,有连续映射满足同胚地映为 妏,其中Dn为欧氏空间 Rn里的单位球体,Sn-1为 Dn的边界球面。这时称集合 n=0,1,2,...构成空间Χ 的一个胞腔剖分,e(α∈Jn)称为 X 的 n 维胞腔,称为粘贴映射,Χn称为n维骨架。条件①、②、③蕴涵具备了一个胞腔剖分的豪斯多夫空间叫作胞腔复形。
若,则称e为e的一个直接面。e称为e的一个面,如果二者之间可以插入一列有限多个胞腔使得前一个为后一个的直接面。
胞腔复形Χ称为CW复形,假如下列条件满足:
C:闭包有限──每个胞腔只有有限多个面;
W:弱拓扑──子集S嶅Χ 为闭集当而且仅当对一切n,α,S∩e为e中的闭集。
例如,在球面Sn中,任取一点p∈Sn,令e0=p,en=Sn,则Sn剖分成了只含两个胞腔{e0,en}的胞腔复形。
又如,在实射影空间RPn中,有一个由n+1个胞腔e0,e1,...,en构成的胞腔剖分,亦即每个维数恰好有一个胞腔。
上面已经提到,CW复形Χ可看作是逐层粘贴胞腔而得到的:Χ0为若干个点;设Χn-1已粘好,用粘贴映射x将Dn粘贴到Χn-1上得到各个e,从而造出Χn,......。
同一个空间可以有不同的胞腔剖分。一般胞腔剖分比单纯剖分所含有的胞腔总数可以少得多,这是胞腔剖分的一大优点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条