1) A-currents
A-电流
2) current
[英]['kʌrənt] [美]['kɝənt]
电流
1.
Experiments on Effects of M-EMS Current on Quality of Bloom;
结晶器电磁搅拌电流对大方坯质量影响试验
2.
Simulating effects of electric current and molar of C to N on denitrification rates in biofilm of bio-electro reactor;
电流和碳氮的量比对生物电极脱氮速率影响的模拟
3.
Study on the Influence of Self-Consumable Electrode's End Shape by the Current in the Electroslag Casting Process;
电渣熔铸中电流对自耗电极端部锥角影响的研究
3) electric current
电流
1.
Heat sink project of big electric current in the low-temperature measurement;
低温大电流测量中热沉的设计
2.
Study on the distributions of electric current and heat in phosphorus furnace and its effect on the operation of the furnace
制磷电炉内电流、热量分布对制磷电炉运行的影响分析
4) electrical current
电流
1.
Parameters of Electrical Current and Speed Used in Thermal Error Prediction of Machining Center;
基于电流与速度参数的加工中心热误差预测方法
2.
Applying impeller cutting method to reduce circulation pump running electrical current;
叶轮切削法在降低热网循环泵运行电流中的应用
3.
Experimental study on the friction and wear behavior of 1Cr18Ni9Ti/copper-impregnated metallized carbon was carried out under the conditions of different loads,sliding speed and electrical current on a pin-on-disc tester.
在销-盘摩擦磨损试验机上试验了载荷、速度、电流对1Cr18Ni9Ti/浸金属碳对磨时的摩擦因数、磨损量及磨损形貌的影响。
5) direct current
直流电流
1.
Solidification behavior of alloy ZA27 under action of direct current;
ZA27合金在直流电流作用下的凝固行为
2.
Analysis on the causes of direct current fluctuation in rectifying system and the solutions;
整流系统直流电流波动原因分析及解决方案
3.
The influences of direct current density,heating temperature,and holding time on the microstructure evolution of magnesium alloy AZ91D during semi-solid isothermal heat treatment were studied,and the related mechanism was also discussed.
考察了直流电流密度、等温温度及等温时间对 AZ91D 镁合金半固态组织的影响,对电流影响组织演变的机理进行了探讨。
6) streaming current
冲流电流
1.
The calculation of streaming current induced by product oil flowing through pipeline is studied.
对成品油管道内油品流动所产生的冲流电流的计算进行了研究。
补充资料:BCS电流方程(BCScurrentequation)
BCS电流方程(BCScurrentequation)
对纯超导体,BCS理论给出的具有迈斯纳效应的超导电流方程为:
`bb{j}_s(bb{r})=-\frac{3}{4\pi\xi_0\lambda_L^2\mu_0}`
$*int\frac{bb{R}(bb{R}*bb{A}(bb{r}'))J(R,T)}{R^4}dbb{r}'$
这是超电流js(r)和矢势A(r')之间的非定域关系。式中R=r-r',ξ0和λL分别是BCS相干长度和伦敦穿透深度,μ0是真空磁导率,js方程与皮帕德方程的差别是量程函数J(R,T)代替了指数因子e-R/ξ0。BCS理论要求
$int_0^ooJ(R,T)dR=\xi_0$
这与$int_0^ooe^{-R//\xi_0}dR=\xi_0$的积分值是相同的。实际上J(R,T)与指数因子很接近,J(R,Tc)与指数因子误差也是较小。由此,BCS理论给予了皮帕德理论微观解释。对于非纯超导体,则J(R,T)的积分值用ξ代替ξ0,且ξ-1=ξ0-1 l-1,这里l是电子平均自由程,ξ又与皮帕德理论中的ξp相一致。由此,在伦敦极限下给出伦敦方程,等等,使宏观理论与BCS微观理论又联系起来,加深了对宏观现象的微观理解。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条