1) solution in closed set
闭集上的解
2) upper closed set
上闭集
1.
For this purpose,new concepts in the quasi-metric space are proposed including the upper limit,upper closed set,upper Cauchy sequence and upper completeness,and some important results about the concepts have been obtained.
提出了非对称度量空间的上、下极限概念,解决了非对称度量空间上收敛性的基本问题,得出了上极限,下极限,子序列极限之间的关系及上闭集、上柯西序列、上完备集的有关结果,证明了Hausdorff半距离空间是上完备的非对称度量空间。
3) upper half-closed set
上半闭集
4) existence on closed set
闭集上生存
5) coanalytic set
上解析集
6) closure of a set
集的闭包
补充资料:闭集
闭集
dosed set
闭集ld吹d肥t买姗.叮l说M“馏ec佃],拓扑空间中的 含有它的所有极限点〔见集合的极限点(】imjtpolnt of a set)、的集合.于是,闭集的补集的所有点都是内点,所以闭集可定义为开集的补集.闭集的概念是把拓扑空间定义为具有满足下列公理的特定集合系统〔所谓闭集)的作空集X的基础:X本身和空集是闭集;任意个闭集的交是闭集;有限个闭集的并是闭集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条