说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> BW-代数
1)  JBW-algebra
BW-代数
1.
In this paper, first, we prove that the local derivations on JBW-algebras are derivations, next, we give an example to show that the local inner derivation may not be in-ner derivation, last, we give a sufficient and necessary condition to JBW-algebras such that all local inner derivations on such JBW-algebras are inner derivations
本文证明了JBW-代数上的局部导子是导子,举反例说明了JBW-代数上的局部内导子未必是内导子,并且给出了JBW-代数的一个充要条件使得它上的局部内导子是内导子
2)  BW algebra
BW代数
3)  LVW/BW
左室重量指数(LVW/BW)
4)  Bin Width & Reciprocal Bin Width
BW&RBW
5)  BW boiler
BW锅炉
6)  BW theory
BW理论
补充资料:代数的代数


代数的代数
algebraic algebra

代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条