1) elastic point support
弹性点支
1.
An analytical solution of transversely oscillation for a rectangular plate with two opposite simple supported sides and the other two opposite arbitrary supported ones is obtained by viewing elastic point supports as determination awaited external forces.
将弹性点支反力视为作用于板上的待定外力 ,求得了两对边简支而另两对边为任意支承的矩形板横向振动的解析解。
2) elastic fulcrum
弹性支点
1.
The elastic function is the ratio between the tangent slop of the function and the initial straight line slope; is also the ratio between the differential of the function at the elastic fulcrum and the increment of the initial elastic straight line at the elastic fulcrum.
本文构造一条初始弹性直线 ,弹性函数就是函数的切线斜率与初始弹性直线斜率之比 ;也是函数在弹性支点的微分与初始弹性直线在弹性支点的增量之比 。
3) elastic subgrade
弹性支点法
1.
The finite element method of beam on elastic subgrade is modified to study the contact frictional effect between retaining wall and soil.
对深基坑工程中计算柔性挡土结构的弹性支点法作了改进 ,提出了考虑柔性挡土结构与土之间摩擦效应的分析方法。
2.
The finite element method of beam on elastic subgrade is modified to study the spatial effect of diaphragm wall.
对深基坑挡土结构地下连续墙的弹性支点分析法作了改进,提出了能考虑地下连续墙空间作用的拟空间弹性支点法,运用虚位移原理推导出考虑空间作用的杆单元刚度矩阵。
4) interior elastic point support
点弹性支承
1.
Based on three-dimensional viscoelastic constitutive relationship, a differential equation of motion for Kelvin s viscoelastic thin rectangular plate with interior elastic point supports is derived in this paper, in which a two-dimensional generized function d appears.
从三维粘弹性本构关系出发,导出了具有多个点弹性支承的Kelvin型粘弹性矩形薄板的运动微分方程。
5) supported by elastic point
弹性点支承
1.
According to deflection function of the beam supported by elastic point of interior,the vibration of slab supported by elastic point of interior were analyzed and got better results,adopting multiple domain approach and Galerkin approach.
以内部为弹性点支承的简支梁的挠度函数为依据,采用multipledomainapproach与Galerkinapproach分析了内部为弹性点支承的四边固支与四边简支矩形板的振动问题,获得了较好的结果。
6) point visco-elastic support
粘弹性点支承
1.
In order to investigate the effect of point visco-elastic supports on the dynamic stability of visco-elastic pile,the differential equation of the motion for visco-elastic pile with point visco-elastic supports under the action of axially periodic load was derived by vibration theory of beam.
为了探讨粘弹性点支承对粘弹性桩动力稳定性的影响,利用梁振动理论给出了轴向周期性动压作用下粘弹性点支承的粘弹性桩振动微分方程,根据动力稳定性理论给出了粘弹性点支承粘弹性桩的临界频率方程和不稳定区域。
补充资料:点弹性
点弹性
点弹性点弹性分为需求点弹性和供给点弹性,是指商品需求曲线或供给曲线上某一点的弹性,它等于商品需求量或供给量的无穷小的相对变化与该商品价格的无穷小的相对变化。用数学公式表示: dq__q_dq_P7d一一万二一一石二’二了 “尸“尸甘 Pq表示需求量;P表示价格;和表示需求点弹性。 dq或:。一圣一空,粤~·“dP dPq Pq表示供给量,户表示价格.从表示供给点弹性。根据点弹性公式.能够计算出商品需求量或供给量随商品价格变化的程度。点弹性的值一方面取决于需求曲线或供给曲线的斜率,另一方面则取决于价格与数量的比值。在线性的需求曲线或供给曲线上,斜率不变,但需求曲线或供给曲线上任何一点的点弹性因价格与数量的比值不同而不同,点的位置越高,弹性越大;反之,点的位置越低,则弹性越小。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条