1) semilinear backward stochastic evolution equation with jumps
带跳半线性倒向随机发展方程
2) backward stochastic evolution equation with jumps
带跳倒向随机发展方程
3) backward semi linear stochastic equation
倒向半线性随机发展方程
4) backward stochastic differential equations with jumps
带跳倒向随机微分方程
1.
A stability theorem of the solutions is derived to the following backward stochastic differential equations with jumps y~ε_t=ξ~ε+∫~T_tf~ε(s,y~ε_s,z~ε_s,v~ε_s)ds-∫~T_tz~ε_sdw_s-∫~T_t∫_Uv~ε_s(z)(ds,dz),ε≥0,t∈ under non-Lipschitz condition and the main tool is a corollary of the Bihari inequality.
证明了带跳倒向随机微分方程列ytε=ξε+∫tTfε(s,ysε,zsε,vsε)ds-∫tTzsεdws-∫∫tTUvεs(z)N(ds,dz),ε≥0,t∈[0,T]在非Lipschitz条件下其解的稳定性;使用的主要工具是Bihari不等式的一个推论。
5) semilinear stochastic evolution equation
半线性随机发展方程
6) Backward stochastic evolution equation
倒向随机发展方程
1.
In this paper,we consider the following backward stochastic evolution equationx(t)+∫ T tf(s,x(s),y(s)) d s+∫ T t[g(s,x(s))+y(s)] d W(s)=X(1) t∈ .
讨论如下一类抽象空间中的倒向随机发展方程:dx(t)=f(t,x(t),y(t))dt+[g(t,x(t))+y(t)]dW(t)x(T)=X{这一工作,是在S。
补充资料:宽禁带半导体(见半导体的能带结构)
宽禁带半导体(见半导体的能带结构)
wide gap semiconductor
习一’平叼能带结构。‘J~正J“、二二,,Conauctor见半
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条