1) Sturm Liouville boundary vlaue problem
Strum-Liouville边值问题
2) Strum-Liouville singular BVP
Strum-Liouville奇异边值问题
4) Sturm-Liouville boundary value problem
Sturm-Liouville边值问题
1.
A class of singular sublinear Sturm-Liouville boundary value problems
一类奇异次线性Sturm-Liouville边值问题
2.
In this paper,we make use of the method of upper and lower solutions,cone theory,the Schauder-fixed point theorem,Amann theorem and mapping degree theory to study the Sturm-Liouville boundary value problems,and obtain existence conclutions which have multiple nongenative solutions under some certain conditions.
利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm-Liouville边值问题(SL。
3.
Some nonexistence, existence and multiplicity results are established for the Sturm-Liouville boundary value problem Some of them are new and the others extend, improve and complement the corresponding results obtained by Erbe, Wang, Hai, Lee and Lin.
本文研究下述Sturm-Liouville边值问题利用Schauder不动点定理、上下解方法和Leray-Schauder映射度理论,获得了解的非存在性、存在性和多重性结果。
5) Sturm-Liouville boundary value problems
Sturm-Liouville边值问题
1.
Existence and nonexistence of positive solutions for Sturm-Liouville boundary value problems
Sturm-Liouville边值问题的多重正解(英文)
2.
We study the existence and multiplicity of solutions on second-order Sturm-Liouville boundary value problems(BVP)-u″(t)=f(t,u(t)) for all t∈subject to u(0)=u′(0) and u(1)=-u′(1),where f:×R1→R1 is continuous.
研究了二阶Sturm-Liouville边值问题解的多解性,通过临界点理论和Morse理论,给出解的存在性和多解性结果。
3.
We consider existence of solutions for non-homogenous Sturm-Liouville boundary value problems of a class of second order differential equations, where we allow that the nonlinearities are sign-changing, and we use fixed point theorem in a cone to obtain the existence of nontrivial and positive solutions of them.
在允许非线性项变号的情况下,利用锥上不动点定理,讨论了一类二阶非线性微分方程组的非齐次Sturm-Liouville边值问题解的存在性,得到了至少一个解及正解存在的多个存在性定理。
6) Sturm-Liouville singular BVP
Sturm-Liouville奇异边值问题
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条