1) reconstruction of the relaxation modulus
松弛模量的反演
2) relaxation modulus
松弛模量
1.
The generalized Maxwell model, which describes stress relaxation modulus, is usually used for analyzing the rheological characteristics of viscoelastic materials.
采用流变力学分析黏弹性材料的流变特性时,常要用到广义Maxwell模型表达的应力松弛模量。
2.
In terms of Laplace transform,the relation of creep compliance and relaxation modulus can be inferred.
利用拉普拉斯变换推出蠕变柔量和应力松弛模量间的关系,因此可以把动态力学实验看成无数个应力为Δiσ的蠕变和回复实验的总效应,从而推出了动态力学实验和静态力学实验间的关系。
3.
In this paper Laplace transforms is utilized in viscoelastic theory of polymers making the relations between various viscoelastic functions like relaxation modulus, creep compliance and functiqns representing dynamic behavior simple and clear, relaxation spectrum and retardation spectrum are defined in terms of Laplace transform to correlate all viscoelastic functions.
将拉普拉斯变换应用于聚合物粘弹性理论,使粘弹性材料的特性函数如松弛模量、蠕变柔量以及表示动态力学性能的函数之间的关系简单明了,并用拉氏变换定义松弛谱和推迟谱,将各粘弹函数相互联系起来。
3) rapid relaxation inversion
快速松弛反演
1.
Secondly, by doing many modeling tests about rapid relaxation inversion(RRI),OCCAM inversion and nonlinear conjugate gradient inversion(NLCGI),we did research on the following characteristics: the relation between initial model and imaging effect, the stabilization of the convergence process and the dependability of the inversion result.
本文在详细研究反演算法以及程序实现的基础上,主要通过数值模拟实验,对快速松弛反演、OCCAM反演以及非线性共轭梯度反演,考察了它们对初始模型的依赖程度、收敛的稳定性、反演效果的优劣等问题。
5) bulk relaxation modulus
体积松弛模量
1.
On the basis of viscoelastic theory,inversion of Laplace transform and numerical calculation is applied in the calculation of bulk relaxation modulus K(t) for solid propellants through the tension relaxation modulus E(t) and viscoelastic poisson ratio v(t).
以粘弹理论为基础,采用拉氏逆变换和数值积分的方法,推导出由拉伸松弛模量E(t)、静态粘弹泊松比v(t)计算固体推进剂体积松弛模量K(t)的计算公式和数值解法。
补充资料:松弛弹性模量
分子式:
CAS号:
性质:在线性黏弹性物体的应力松弛中,与单位应变相对应的应力(时间函数)称作松弛弹性模量。由于施加于材料上的外力作用时间是一个变量,因此松弛弹性模量是时间的函数,同时聚合物的性质和温度有关,如应力松弛模量在玻璃化温度Tg附近会降低约三个数量级。
CAS号:
性质:在线性黏弹性物体的应力松弛中,与单位应变相对应的应力(时间函数)称作松弛弹性模量。由于施加于材料上的外力作用时间是一个变量,因此松弛弹性模量是时间的函数,同时聚合物的性质和温度有关,如应力松弛模量在玻璃化温度Tg附近会降低约三个数量级。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条