1) four dimention arithmetic space
四维算术空间
2) four-dimensional space
四维空间
1.
Discussing on the four-dimensional space image of rich city;
浅议丰富城市的四维空间形象
2.
By taking the strategy of uniting geometry with algebra and utilizing the principle that the dot product of two perpendicular lines is zero, all the perpendicular problems encountered in four-dimensional space are systematically discussed.
本文用形、数结合的观点,以两线垂直数性积为零作为基础,直线与三维空间垂直的投影特征作为图解问题的依据,系统地论述了四维空间里的所有垂直问题,且各种情况均有明确的结论。
3.
Three basic quadric trans formation in four-dimensional space are put forward.
在四维空间中,建立三种基本平方变换方法,其他的许多平方变换方法可由其组合生成。
3) four-dimension space
四维空间
1.
This pape has discussed the definitions of Four-dimension Space, Four-dimension Velocity,Four-dimension Momentum,Four-dimension Force.
文章介绍了四维空间矢量、四维速度矢量、四维动量、四维力矢量的定义 ,讨论了它们的特殊洛伦兹变换的矩阵形式以及它们与普通三维量之间的的关系。
4) four dimensional space
四维空间
1.
Exploration research on time and space idea of four dimensional space in exhibition building
展馆建筑四维空间的时空理念探索研究
2.
By taking the strategy of uniting geometry with algebra and using the method of minimal value, the distance problems between a line and a line in four dimensional space are investigated and the caculation formula are given.
用形数结合的观点和极小值法,研究了四维空间中两直线间的距离问题,并给出了相应的计算公式。
3.
By means of uniting geometry with algebra, the arc length, tangent line, cotangent space and curvature of curve in four dimensional space are investigated, and the corresponding calculation formula in each cases are given.
用形数结合的观点研究了四维空间中曲线的弧长、切线、法空间和曲率问题,并给出了其计算公式。
5) the four dimensional space
四维空间
1.
The four dimensional space, means that the mankind the substance space( namely three dimensional space ) of the concrete activity, plus one more consciousness measurement ( time factor).
四维空间,是指在人类具体活动的实质空间(即三维空间)之上,再加上一个瞬间取向的知觉量度(即时间因素)。
6) arithmetic of space
空间算术
补充资料:算术空间
算术空间
alithetic space
算术空间larithetic sPa理声脚冲Men护暇c目犯n脚crP田卜仃IIO],攀宇回(,,umber spa沈),半标宇回(coordina‘espa优),实n空间frealn一spa戊) 实数集R的Descartes幂R”具有线性拓扑空间的结构这里,加法运算定义为:以一、戈)斗卜:丫,)价一知二戈‘·尤「)、与数入6R的乘祥;定义为 天(义卜、灭。)一(凡x!,…,走丫。).R”中的拓扑是:R的n数组的直积的拓扑;它的基是由开陀维平行、面体(n一dimensional琳rallelepipe-(la) l}(x{,二”,卜R”;“<义二艺大又 己岔!其中义二(、!,、。),v二(、,·、J户er.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条