1) Network mapping equation
网络映射方程
2) network mapping
网络映射
1.
The network mapping technology is studied,and a new method using the network mapping technology to CD image server to realize sharing CD-ROM database in the network is suggested.
针对目前应用中的光盘数据库网络共享方案的特点,分析了网络光盘数据库模型,并对网络映射技术进行了研究,提出了利用网络映射技术改进光盘镜像服务器、实现数据库光盘网络共享的新方案,测试结果表明,此方案解决了文件系统的相互访问支持问题,对该服务器的数据访问速度大大高于对共享光驱中数据的访问速度,同时其响应速度相当于光盘镜像服务器。
2.
This paper analyses the characteristics of the method for sharing CD-ROM databases in the network and the hard disk combination pattern, studies the network mapping technology,and puts forward the new method for improving the hard disk combination pattern and realizing CD-ROM database sharing in the network by using the network mapping technology.
介绍了目前应用中的光盘数据库网络共享方案的特点,分析了硬盘组合模式,并对网络映射技术进行了研究,提出了利用网络映射技术改进硬盘组合模式实现数据库光盘网络共享的新方案,测试结果表明此方案解决了文件系统的相互访问支持问题,同时其响应速度相当于光盘镜像服务器,在多客户访问的情况下,该服务器的数据访问带宽远高于普通共享光驱。
3.
This paper puts forward a whole solution for CD-ROM database resource integration by the network mapping technology based on the current status of usage of CD-ROM database resource.
针对光盘数据库资源利用现状,提出一种基于网络映射技术的光盘数据库资源整合的整体解决方案。
3) mapping network
映射网络
1.
An algorithm was proposed to generate small-scale mapping network model based on a large-scale bottom layer network.
提出了一种基于较大规模的底层网络生成较小规模的映射网络模型的算法,比较了以均匀的随机图和非均匀的无标度网络作为底层网络时,所生成的映射网络模型的结构性质。
4) mapping equation
映射方程
1.
The mapping equation of micro-discharge in dielectric barrier discharges;
介质阻挡放电中微放电的映射方程
5) network equations
网络方程
1.
The network equations based on loop current method and expressed in matrix form are established,and the loop currents,then the brance currents,can be calculated by the equations.
以回路电流法为基础 ,选定某一定子绕组为基准绕组 ,列写了用矩阵形式表示的、计算回路电流及支路电流的网络方程。
2.
By virtue of graph theory,the network equations based on the loop current method are set up for single-phase induction motors.
以回路电流法为基础 ,借助于网络图论 ,建立了单相异步电机的网络方程 。
6) self-organizing map
自组织映射网络
1.
Peak load forecasting using the self-organizing map;
基于自组织映射网络的峰值负荷预测方法
2.
The method uses a self-organizing map to obtain the class label for each training sample and enhanced Fisher linear discriminant(EFM) to find the optimal projection for pattern classification,and a Gaussian distribution to model the class-conditional density function of the projected samples for each class.
该方法首先使用自组织映射网络为每个训练样本确立类别标签 ,然后用改进的 Fisher线性判别模型对所有样本进行投影以尽可能拉大各类之间的距离 ,最后使用高斯分布对每类样本进行建模 。
补充资料:泊松方程和拉普拉斯方程
势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
,
式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
。
在各分区的公共界面上,V满足边值关系
式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为
式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
参考书目
郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
,
式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
。
在各分区的公共界面上,V满足边值关系
式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为
式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
参考书目
郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条