说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 反正规子群
1)  Abnormal subgroup
反正规子群
2)  anti-fuzzy normal subgroups
反模糊正规子群
1.
Using the~1λ-Threshold,some definitions of the anti-fuzzy subgroups,anti-fuzzy normal subgroups,anti-fuzzy normalize and anti-fuzzy centralizer are introduced.
利用1λ-截集引入了反模糊子群、反模糊正规子群、反模糊正规化子及反模糊中心化子的概念,并讨论了它们的性质。
2.
The definitions and some properties of the anti-fuzzy subgroups and anti-fuzzy normal subgroups are given in paper[1].
文[1]给出了反模糊子群与反模糊正规子群的定义及性质,本文将给出反模糊子群的反模糊正规子群的定义及性质。
3.
Using the λ-Threshold,some definitions of the anti-fuzzy subgroups,anti-fuzzy normal subgroups,anti-fuzzy normalize and anti-fuzzy centralizer are introduced.
本文利用λ-截集引入了反模糊子群、反模糊正规子群、反模糊正规化子及反模糊中心化子的概念,并讨论了它们的性质。
3)  Anti-L-fuzzy normal subgroups
反LF正规子群
1.
Anti-L-fuzzy normal subgroups is considered on the basic of present literatures.
在已有研究成果的基础上,进一步研究反LF正规子群。
4)  Normal Anti-fuzzy Subgroup
正规反模糊子群
1.
The concepts of the anti-fuzzy subgroups of a group and normal anti-fuzzy subgroups are given in this paper.
给出了一个群G的反模糊子群和正规反模糊子群的概念,这些定义不同于Rosenfeld和吴望名等的定义。
5)  anti L-normal subgroup
反L-正规子群
6)  normal subgroup
正规子群
1.
Character of group which only have n nontrivial normal subgroups
仅含n个非平凡正规子群的群的特征
2.
By using algebra of fixed point class to determine the component factors and properties of normal subgroup H of the fundamental group of the covering space, the paper studies the relation of fixed point class with fixed point class H.
本文利用不动点类的代数化 ,决定复迭空间的基本群的正规子群H的构成因素及其性质 ,研究不动点类与H不动点类的关系。
3.
Based on the Rough theory, a rough subgroup with respect to a normal subgroup of a group is discussed, and some properties of the lower and the upper approximations in a group are studied.
基于粗糙集理论 ,对一个群的子集关于正规子群的粗糙近似子群作了探讨 ,并研究了一个群的上、下近似的性
补充资料:正规子群


正规子群
normal srihgroqi

  正规子群f.川口日,鲍”,;”o州a刀研‘‘举月“犯月‘],正规除子(加m司divisor),不变子群(访珑币田吐sub-罗〕uP)群G的子群H,使得G模H的左分解与右分解相同.换言之,对于任意元素a6G,陪集aH和Ha(作为集合)相等.这时亦称H在G中正规,记作H且G:如果还有H笋G,则记作H阅G.子群H在G中正规当且仅当它包含其任意元素的所有G共辘(见共辘元(conju即把日翻笠nis)),即H“住H.正规子群还可以定义为与其所有的共扼都相等的子群,因而也被称为自共扼子群(货扩·。功火势忱subgro叩). 对于任意同态(hOIno加甲恤m)州G~G’,G中被映成G’的单位元的全体元素组成的集合K(即同态毋的核(kenle!of血加伽曲印比m))是G的一个正规子群.反之,G的任一正规子群都是某个同态的核.特别地,K是映到商群(q叩血ntgro叩)G/K的自然同态的核. 对于任意正规子群的集合,它们的交仍是正规的,由G的任意一族正规子群生成的子群仍在G中正规.0.A.物a,叱a撰【补注】群G的子群H是正规的,如果对所有的g‘G有g一’Hg=H,或者等价地,其正规化子N。(H)=G,见子集的正规化子(non工以止况r of a suh记t).正规子群亦称为不变子群(运论由以su地”叩),因为它在G的内自同构〔~auto伽rp比m)x巨尸=g一,xg(g‘G)下是不变的.在全体自同构下不变的子群称为全不变子群(蒯y一访招山ntsu地加uP),或者特征子群(d朋沈施加su琢ouP).在全体自同态下不变的子群称为全特征子群(刘y‘玩‘‘泊由tic su地阳叩).【译注】有的书将全体自同态下不变的子群称为〔完)全不变子群,而在全体自同构下不变的子群称为特征子群,如见[AI],[BI].
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条