说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 边界变分方程
1)  boundary varition equation
边界变分方程
2)  boundary variation equation
MRM边界变分方程
1.
The multiple reciprocity method (MRM) boundary variation equation, planar solutionexpression and well - posedness of Boundary Value Problem of Equation Δu+k2u=0;inΩ∪Ω′R2,u|Γ=u0 are derived.
从中可以看出,MRM边界变分方程中只包含弱奇异积分核,问题解的表达式后并不加任何多项式,因而也不需要引入Lagrange乘子求解该项,这给边界元数值求解过程带来极大的方便。
2.
The multiple reciprocity method (MRM) boundary variation equation planar solution expression and well-posedness of boundary value problem △2u-s△u+k2u=0, x∈Ω∪Ω (?)R2 ;are derived.
导出边值问题的定解问题,MRM边界变分方程,全平面解的表达式。
3)  MRM boundary variational equation
MRM-边界变分方程
4)  IBIEs
间接变量边界积分方程
5)  boundary integral equation method
边界积分方程法
1.
Using boundary integral equation method, the authors calculate the results of symmetric four pole sounding and Wenner array sounding for an equiaxial 3 D body in homogeneous half space, and proves that the results are correct by comparing the results with calculating results of relevant analytic equation.
以均匀半空间中等轴状三维地质体为例 ,利用边界积分方程法对对称四极和温纳尔 2种装置的电测深进行数值计算 ,并与相应解析表达式的计算结果进行对比 ;用数值模拟方法研究了均匀半空间中板状体的对称四极、温纳尔等装置电测深拟断面图“看得见但看不穿”的规律 。
2.
On the hasis of appropriate Green functions,boundary integral equation method is used to analyze the problem of water waves scattered by the floating body.
首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。
6)  Boundary integral equation
边界积分方程
1.
Space location of objective bodies under ground using boundary integral equation method;
用边界积分方程法对地下目标体基本定位
2.
Comparison of solving methods for boundary integral equation of potential flow;
势流问题边界积分方程的几种解法对比
3.
A new boundary integral equation for half plane elastic bodies contaning cracks;
半平面裂纹问题的边界积分方程
补充资料:变分方程


变分方程
variational equations iS equations in variation

  变分方程组则“具有拟多项式的右方”.自治系统沿周期解(殆周期解)的变分方程是具有周期(殆周期)系数的线性微分方程组(见周期系数的线性微分方程组(l~r system of diffel℃Iltial equa加ns witll Per-iodic eoell记ients);殆周期系数的线性微分方程组(]i“既s”把m ofdi浅I-e 11tiajequa加拙withahl℃stperiod-ic coeffieients)). 上面给的定义适用于任意阶方程.例如,摆方程无十田Zsinx二O在下平衡位置(x=O,又二0)的变分方程(如果只有相空间中的初始点变化)是义+田Zx二O,称为摆的小振动方程(叫Llation for srnaU oscilia-tions of ape们(11llum),而在上平衡位置(x=冗,交=0)的变分方程是义一。Zx=0.对于微分流形上的微分方程,解的变分方程可以类似于上面讲过的R”上的情况来定义;变分方程的解之值在流形的切丛中.有两种方法把任意微分流形的情况化为R”的情况,第一种是把流形嵌入一个维数充分高的Euclid空问中,决仁把微分方程(向量场)拓展到一个邻域中去,第二种方法是在轨道的一个邻域中,用一个坐标卜中的坐标写出定义于微分流形上的微分方程,而这个坐标卡的选取光滑依赖于此点(例如,在Rlel刀ann流形上应用指数测地映射).这样就可以把这个方程写成R门上的方程,而且‘(和第一种化法一样)其右方和流形上的微分方程的右方(即向量场)有相同的光滑性.对于R~流形上的微分方程又二F(x),若不改变F,则其沿轨道戊(t)的变分方程可以写成 V:(二(,))r=V rF(x(t)),这里V。是共变导数(covdnant derivati祀).一个微分映射/:丫~尸(V”是一微分流形)沿着轨道毛.厂‘x}r。,的变分方程(若不变动f)是方程 犷(亡+I)一dff,:r(t);这方程之解犷(·)在t点取值于V”在点f『x处的切空间兀,*V”中,而解本身就是序列 {d(j,)叉若},。z,否〔双V”,d(f勿)义即f的m阶迭代在x之导数. 令V月为闭微分流形.映V”到V”上的c,类微分同胚厂之集合可赋以C’拓扑.以下的断言是成立的(见!4]):l)对每一个kc{l,…,n},瓜n,OB特征指数(Lyapunov cll田飞Icte比tic exPonent)几一(j,·,一R*。票,,,。潍。瓦令h,dft:一 (2)这里G*(双沪)是切空间双俨的k维向量子空间所成的G秘Inalm流形.它是一个第二B苗比类(B姗elass巴)函数又。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条