说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 通解的法式
1)  normal form of general solution
通解的法式
2)  analytic expression fomula of the general solution
通解的解析表达式
3)  The theory of formal interpretation
形式的刑法解释
1.
The theory of formal interpretation sees formal justice as its end with legality sometimes running counter to reasonableness whereas the theory of substantial interpretation aims to realize substantial justice with its reasonableness occasionally contrary to legality.
形式的刑法解释以规范治理为目标,旨在揭示刑法规范的真实含义;实质的刑法解释以处罚必要为目标,根据有无处罚必要对刑法规范含义进行解释。
4)  characteristic root expression formula of the general solution
通解的特征根表达式
5)  integral expression of the general solution
通解的积分表达式
6)  general solution formula
通解公式
1.
By the methods of reducing order and Euler s eigenvalues,we obtain the general solution formula to one kind of systems of three dimensional second order ordinary differential equation with constant coefficients.
采用降阶和特征根 (欧拉 )方法 ,给出了一类三维二阶常系数微分方程组的通解公式 ,并通过算例与拉氏变换法进行了比较。
2.
With the variable replacement method, general solution formulae were given to the linear differential systems with complex constant coefficients and that with a class of complex variable coefficients.
利用变量替换的方法,给出了复常系数和一类复变系数线性微分系统通解公
3.
By reducing order and using Euler s eigenvalue method,the general solution formula to one kind of three-dimensional second-order ordinary differential equation groups with constant coefficients is obtained.
采用降阶和特征根(欧拉)方法,给出一类三维二阶常系数微分方程组的通解公式,并通过算例与拉氏变换法进行比较,说明利用该通解公式求解高阶微分方程组比采用其他方法求解更简捷,且具有通用、严谨、清晰和实用等优点。
补充资料:通解


通解
general solution

  通解【罗.”l州州加;。6川eePe山e。即] 九个常微分方程的方程组 交=f(r,x),x=(x、,…,x。)〔R”,(l)在区域D中的通解是n参向量函数族 x二职(t,C:,“’,C,),(C,,’“,C)任C C=R“,公 *黯关于‘是光滑的,关于参数是连续的,由此毛糊碑参数值可以得到方程组(1)的任何解,其图形处于嘛域G CD内,这里,D CR““是使方程组〔枯史昏爆在和唯一性定理的条件满足的一个区越,;‘存对辉定参数也可取值士的).在几何上,:离程细(帅在区域G中的通解表示这个方程组的完整理盏翰举区域G的不相交积分曲线族. 由方程组(l)在G中的通解可以得到玄个方程组的具有初始条件x(:。)=x「〔(t。,x。)任G)的Ca曲y问题(Q公勿Prob】eln)的解:可n个方程的方程组x0二职(气,C,,…,氏)决定n个参数C,,…,c。的值,然后代人(2).如果x=沙(r,t。,xo)是方程组(l)的满足条件x(t0)二x0((t0,x0)任D)的解,则n参函数族 、‘访(:,:。,二兮,…,x:)是这个方程组在区域D中的通解,并称为浮解的〔城u-吻形术(。坡坷如mofa罗加阁。!以沁n),其中:。是一个固定数,而把对、、、·,式看作参数.如果知道了通解,就可唯一地童建微分方程组:为此,只需从n个关系式(匀和把(2)对亡微分而得到的n个关系式中梢去n个参数Cl,…,C。即可. 对于n阶常微分方程 夕(”)=f(x,梦,y‘,…,夕(”一’)),(3)它在区域G中的通解具有下列n参函数族的形式: y,伞(x,C:,‘二,C,),(C,,…,C。)任C C=R“, (4)由此,适当选取参数值,就能得到方程(3)的具有任意初始条件 y(x。)=,。,,‘(x。)刊。,、二,,‘”一”(x。)二,舌一”, (x。,儿,夕舀,…,夕各一’))。G c=D的解.这里,DCR”十’是使方程(3)的存在和唯一性定理的条件满足的一个区域. 当参数取特定值时,由通解得到的函数称为特解(p刚血lar solul沁n).包含给定方程组(方程)在某个区域中的一切解的函数族并不总能表示为自变量的显函数.这个函数族可以表示为隐函数的形式,这时称为通积分(脚e司示卿间),或者表示为参数形式. 如果一个给定的常微分方程(3)能以闭形式积分(见徽分方程的闭形式积分法(加唤归由n ofdi既比nd习、阅姐由邝incl仍的form)),则通常可以得到形如(4)l的关系式,其中参数是作为积分常数产生的,并且是任意的.(所以常常说:n阶方程的通解含有n个任;掀数一》但是,这样的一个关系式决不总是在使原热翰全。目翔问题的解存在且唯一的整个区域中的通因干胶溉仪 了‘)里、
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条