1) Kuhn-Tucker constraint qualification
Kuhn-Tucker约束品性
1.
In this paper, under the Kuhn-Tucker constraint qualification,the author gave the Kuhn-Tucker type necessary conditions for a class of nondifferentiable generalized fractional programming problems.
在 Kuhn-Tucker约束品性下 ,给出了一类非可微广义分式规划解的 Kuhn-Tucker型必要条件 ,提出的问题和所得的结果是对现有文献的改进和推
2.
Under Kuhn-Tucker constraint qualification,the Kuhn-Tucker type necessary conditions are given.
提出了一类目标函数的分子和分母中都含有支撑函数的不可微广义分式规划问题,在Kuhn-Tucker约束品性下,给出了这类广义分式规划的Kuhn-Tucker型必要条件,并在不可微函数的广义(F,ρ)-凸性假设下,给出了它的最优性充分条件,所提的问题及所得结果相对现有文献具有一般性。
2) generalized Kuhn-Tucker constraint qualification
广义Kuhn-Tucker约束规格
3) Kuhn-Tucker condition
Kuhn-Tucker条件
1.
In the framework of locally convex topological vector space,the scalarization theorem,Kuhn-Tucker conditions as well as the duality theorem and the saddle points theorem on Henig proper efficient solutions with respect to the base for vector optimization involving arcwise connected convex maps are established separately.
在局部凸拓扑向量空间中,建立了弧连通凸映射向量优化问题关于基的Henig真有效解的标量化定理、Kuhn-Tucker条件、对偶性定理以及鞍点定理。
2.
In our algorithm,replacing the lower level problem by its Kuhn-Tucker condition,the bilevel linear programming is transformed into a traditional single-level programming problem,which can be transformed into a series of linear programming problem.
在该方法中,用下层的Kuhn-Tucker条件代替下层问题,将原二层线性规划转化为传统的单层规划问题。
3.
Via connecting linear plus power module ideal point algorithm under Kuhn-Tucker condition,the bilevel multiobjective programming problem is changed to a singula.
给出双层多目标决策问题数学模型的一种解决方法,把线性加权模理想点法和Kuhn-Tucker条件结合起来,从而把双层多目标规划问题转化为单层单目标约束规划问题,进而求得原问题的满意有效解。
4) Kuhn-Tucker theorem
Kuhn-Tucker定理
1.
One computing method of the minimizing internal forces in multiple robot manipulating systems based on the Kuhn-Tucker theorem was proposed because the Kuhn-Tucker theorem can transform the complex restricted conditions of the minimizing extremism problem.
利用Kuhn-Tucker定理可转化极值问题复杂约束条件的特性,提出了一种求解多机器人作用下物体内力极小值的方法。
2.
In this paper, using a saddle point theorem we prove an abstract Kuhn-Tucker theorem, in which we give an equivalent condition on the existence of solutions of nonlinear programming problems for abstract functions with constrains in operator form.
本文用鞍点定理证明了一个抽象的Kuhn-Tucker定理,即得到由算子形式给出的约束,定义在抽象空间上的函数的非线性规划问题解的存在性的一个等价条件。
5) Kuhn Tucker condition
Kuhn-Tucker条件
1.
As for weak efficient solution to multi objective programming inequality and equality constrants, the new necessary condition between Fritz John condition and Kuhn Tucker condition is established under weaker condition.
针对具有等式和不等式约束的多目标规划的弱有效解 ,在相对较弱的条件下给出了一个介于著名的Fritz-John条件与 Kuhn-Tucker条件之间新的必要条
6) kuhn-Tucker conditions
Kuhn-Tucker条件
1.
The author has proved Fritz John conditions and Kuhn-Tucker conditions ofα-major optimal constraint solutions on the bases of the representation ofα-major constraint structure set for the problem.
在给出问题的α-较多约束集结构表示的基础上,证明了这类问题的α-较多约束最优解要满足的FritzJohn条件和Kuhn-Tucker条件。
2.
In this algorithm,inequality constrained least-square problems are first translated to convex quadratic programming problems and then translated to the linear complementarity problem(LCP) using Kuhn-Tucker conditions of quadratic programming,which consequently gives the general form of least-squares estimation in adjustment model,as well as the algorithm is simple and easy to understand.
采用的方法是先将参数带有不等式约束的最小二乘问题转换成凸二次规划问题,然后利用二次规划的Kuhn-Tucker条件把二次规划问题转换成线性互补问题(LCP),从而求得参数最小二乘估计的一般形式,并给出算法,便于在实际测量中应用。
补充资料:Kuhn-Roth reaction
分子式:
CAS号:
性质:主要用来测定碳链上所带有的甲基数目。碳链上甲基可用硫酸和铬酸氧化裂解而形成醋酸。取一定量待测物质进行反应后,将过量铬酸还原掉,并蒸出醋酸,进行滴定,即可测出试样中所含的碳上甲基的数目。用本法也可测定乙氧基和乙酰基,因为它们均可被氧化成醋酸,但不能用来测定高级脂肪酸中的甲基数目以及连接在芳环上的甲基数目。在核磁共振技术发展日益完善的今天,本方法的重要性已日益降低。
CAS号:
性质:主要用来测定碳链上所带有的甲基数目。碳链上甲基可用硫酸和铬酸氧化裂解而形成醋酸。取一定量待测物质进行反应后,将过量铬酸还原掉,并蒸出醋酸,进行滴定,即可测出试样中所含的碳上甲基的数目。用本法也可测定乙氧基和乙酰基,因为它们均可被氧化成醋酸,但不能用来测定高级脂肪酸中的甲基数目以及连接在芳环上的甲基数目。在核磁共振技术发展日益完善的今天,本方法的重要性已日益降低。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条