说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 算术数集
1)  the set of arithmetic numbers
算术数集
1.
This paper gives a construction of the set of arithmetic numbers and proves some qualities of the set of arithmetic numbers.
给出算术数集的一种构造,并证明算术数集的有关性质。
2)  point set arithmetic
点集算术
3)  hyperarithmetic set
超算术集
4)  arithmetic progression
算术数列
1.
On the Sums of three or more primes in arithmetic progressions;
关于算术数列中三个或多个素数的和
2.
Diophantine approximation by prime varibles in arithmetic progressions;
算术数列中的素变数丢番图逼近
3.
On the integer represented as the product of k prime numbers in arithmetic progression;
关于表整数为算术数列中k个素数的乘积
5)  arithmetical function
算术函数
1.
Two new arithmetical functions and their mean values;
两个新的算术函数及其均值
2.
A new arithmetical function and its mean value;
一个新的算术函数及其均值
3.
Mean value problems of arithmetical functions play an important role in the study of analytic number theory,and they relate to many famous number theoretic problems.
引入了两个新的算术函数,并利用Perron公式给出了两个均值公式。
6)  arithmetic progression
算术级数
1.
They also remarked that Heath-Brown gave explicitly infinitely many 4-term arithmetic progressions,where each term can be written as sums of two squares.
Heath-Brown具体构造出无穷多组4项算术级数,其中每项均能表示为两个正整数的平方和。
2.
It has been proved that the primes contain arbitrarily long arithmetic progressions.
已有结论表明:素数集中存在任意长的算术级数。
3.
In this article, we prove that the ternary Goladbach problem in arithmetic progression can be solved for almost all large positive moduli, where the moduli can be as large as AT1/6-ε.
本文考察了几乎所有模的算术级数中的奇数Goldbach问题。
补充资料:加权算术平均数
加权算术平均数是将各组标志值乘以相应的各组单位数或权数求出各组标志总量,然后将其加总求得总体标志总量,同时把各组单位数或对数相加求出总体单位总量,最后用总体标志量除以总体单位总量。在计算算术平均数时,如果资料已经分组,则不能简单地将各组标志值相加作为总体总量,而应用此法计算其平均数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条