说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 本质独立集
1)  essential independent sets
本质独立集
1.
We will present eight sufficient conditions for the existence of hamiltonian cycles in A1,r-free graphs by studying the essential independent sets in a graph and the independent sets in its partially square graph.
本文借助于对图的本质独立集和图的部分平方图的独立集的研究,对无K1,r图中哈密顿圈的存在性给出了八个充分条件。
2)  negative independent sample set (NIS)
独立负样本集(NIS)
3)  strong essential independent set
强基本独立集
1.
This paper gives a new concept of strong essential independent set, and proves the following theorem: Let k ≥ 2 and let G be a k-connected graph on n vertices such that max{d 1 (x)|x∈ S}≥n/2for every strong essential independent set S on k vertices.
文中给出了强基本独立集的概念,并证明了如下定理:设G是一个具有n个顶点的k-连通图,其中k≥2。
2.
In this paper,we give a new concept of strong essential independent set,and prove the following theorem: Let k≥ 2 and let G be a k-connected claw-free graph on n vertices such that max{d2(x)│x∈S}≥n│2 for every strong essential independent set S on k vertices.
文中给出了强基本独立集的概念,并证明了如下定理:设G是一个具有n个顶点的k-连通无爪图,其中k≥2。
4)  independent sets
独立集
1.
On cliques and independent sets;
关于团和独立集的一类极值问题
2.
If d(S)+d(T)≥n+1 for every two strongly disjoint independent sets S and T with |S|=s and |T|=t,then.
本文利用独立集的度和得到如下结果:设s和t是正整数,G是(2s+2t+1)-连通n阶图。
3.
Let G be a graph, for any U■V(G), let N(U)=∪_ (u∈U) N(u),d(U)=│N(U)│, we give two results: Let s and t be two positive integers and G be a (2s+2t+1)-connected graph of order n; If d(S)+d(T)≥n+1 for every two strongly disjoint independent sets S and T with│S│=s and │T│=t, respectively, then G is hamiltonian-connected or 1-hamiltonian.
我们给出了两个结果:设s和t是正整数,G是(2s+2t+1)-连通图,且阶为n;若对于任两个强不交独立集ST,│S│=s,│T│=t ,有d(S)+d(T) ≥n +1 ,则G是哈密尔顿连通的或1-哈密尔顿。
5)  total independent set
全独立集
6)  Line-independent sets
线独立集
补充资料:〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗


〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗


内科著作。1卷。原题清叶桂(天士)家传,撰年不详。此书汇集内科杂证70余种,方剂近200首。每证各为一论,阐明疾病性质、病因、症状、治则及方药。论后每引经说,概括病机。所列方药服法亦皆详备。又列“五脏六腑论”一章,引用《内经》、《难经》,逐一论述五脏六腑之形象、部位、表里关系、病症及治法。本书内容多录自《临证指南》,恐系后人伪托叶氏之作。现存抄本
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条