1) Error estimate of the remainder
余项误差估计
2) remainder estimation
余项估计
1.
The uniqueness of the solution is proved, and the asymptotic expansion of the solution and remainder estimation are also given.
研究了一类含有迁移项的奇摄动抛物方程的周期解问题,给出了解的存在唯一性、渐近解及其余项估计。
3) error estimate
余项估计
1.
<Abstrcat>To extend the interpolation problems of Lagrange and Taylor is the ordinary problem about interpolation with derivatives of higher order; The existence of only solution and error estimate are proven; The realizing method is given.
将拉格朗日插值问题、泰勒插值问题揉合为一体进行综合推广,即高次带导数的插值问题的一般情形;给出了关于问题解的存在唯一性、余项估计的证明;并讨论了具体的实现方法。
4) error estimate
误差估计
1.
Characteristics-finite volume element method and its error estimate for nonlinear convection diffusion problems;
非线性对流扩散问题特征-有限体积法及其误差估计
2.
An error estimate for the subdivision Bézier net;
细分Bézier网的误差估计
3.
An error estimate to the optimal reduced mode;
一类最优简化模型的误差估计
5) error estimation
误差估计
1.
Minimum error estimation using wavelet for time series similarity search;
对时间序列相似性查询的最优小波误差估计
2.
The error estimation of quadratic Lagrange s interpolation and its interpolating function in triangular element;
三角形单元上二次Lagrange型插值与被插函数的误差估计
3.
Regularization error estimation of spherical harmonic coefficients from SGG observation;
SGG重力场球谐系数正则解的误差估计方法
6) Error Evaluation
误差估计
1.
GPS positioning error evaluation based on fuzzy algorithm;
基于模糊算法的GPS定位误差估计
补充资料:水文估计量的抽样误差
水文随机变量的分布函数中的参数(或参数的函数)的估计量的均方根误差。水文随机变量x的分布函数F(x,θ) 中所含的参数θ,一般皆为未知数, 需根据样本资料(x1,x2,...,xn)予以估计。换言之,为进行参数估计,必须构造一个样本的函数,称为估计量,记为(x1,x2,...,xn),从而当有一具体样本(x1,x2,...,xn)之后,就可算出(x1,x2,...,xn),做为θ的估计值。由于样本为随机变量,可以证明,作为样本函数的估计量(x1,x2,...,xn),也是随机变量,故有其概率密度函数,记为g(,θ),称为抽样分布(见上页图)。它表示估计量取各种不同数值的可能性大小。虽然任一估计量取得真值θ的概率都为零, 但不同的估计量其平均误差的大小还是不同的。这个平均误差,通常以估计量对参数真值θ的均方根误差来代表,可表示为:
式中E为取期望值的符号,根据定义它等于式中右侧的积分。粗略地说,g(,θ)的图形对θ越集中, σ孌越小,反之则越大。
在水文统计中,需要估计的往往不仅是参数,还有参数的某种函数,例如x的p分位数xp(见水文随机变量)。在由样本求得了θ的估计量后, 就可进一步求得xp的估计量憫p。类似于对σ孌的讨论,通常以估计量憫p对真值xp的均方根误差来代表憫p的平均误差,记为σ憫p。σ孌特别是σ憫p的数值,在分布函数及估计方法都很简单时,可用分析方法采用近似公式予以计算。在分布函数或估计方法较复杂时,用近似公式计算,误差较大。这时可用蒙特卡洛方法求出其近似值。水文统计学研究的基本内容之一,就是要设法提出一种抽样误差最小的估计量。
式中E为取期望值的符号,根据定义它等于式中右侧的积分。粗略地说,g(,θ)的图形对θ越集中, σ孌越小,反之则越大。
在水文统计中,需要估计的往往不仅是参数,还有参数的某种函数,例如x的p分位数xp(见水文随机变量)。在由样本求得了θ的估计量后, 就可进一步求得xp的估计量憫p。类似于对σ孌的讨论,通常以估计量憫p对真值xp的均方根误差来代表憫p的平均误差,记为σ憫p。σ孌特别是σ憫p的数值,在分布函数及估计方法都很简单时,可用分析方法采用近似公式予以计算。在分布函数或估计方法较复杂时,用近似公式计算,误差较大。这时可用蒙特卡洛方法求出其近似值。水文统计学研究的基本内容之一,就是要设法提出一种抽样误差最小的估计量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条