1) commutation near ring
变换近环
1.
The commutation near ring defined, it is proved that the near ring of an arbitrary near ring with its unit dimension is isomorphous with its commutation near ring.
定义了变换近环 ,然后证明了任意一个有单位元的近环与它的变换近环同构 ;任意一个无零因子近环与它的变换近环同
2) Near Ring and Commutation Near Ring
近环与变换近环
3) approximate transformation
近似变换
1.
Briefly introduced several methods of the approximate transformation of the plane rectangular coordinates,discussed the principle of the Topological transformation method to carry on the approximate transformation of the plane rectangular coordinates,and had carried on the practice analysis to its transformation precision.
简要介绍了对平面直角坐标进行近似变换的几种方法,重点讨论了拓扑变换法对平面直角坐标进行近似变换的原理,并对其变换的精度情况进行了实践分析。
5) near identity nonlinear transformations
近恒同变换
1.
On the basis of normal form theory, using the near identity nonlinear transformations can further simplify the central manifold equations, and get the .
利用中心流形定理,将原n维动力系统降为二维的中心流形,根据规范形理论,利用近恒同变换,对中心流形上流的方程进一步化简,计算出其最简规范形中只包含的三阶和五阶项,并且编写了Mathematica程序,利用该程序,可直接由原n维动力系统计算出其Hopf分岔的最简规范形。
6) near zone to far zone transformation
近远场变换
1.
In this paper, it is the first time that this method is applied to the calculation of time-domain near zone to far zone transformation.
同时 ,首次尝试利用ADI FDTD方法结合时域近远场变换技术计算天线方向图。
补充资料:Radon变换和逆Radon变换
Radon变换和逆Radon变换
X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条