说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矩阵Hamilton系统
1)  matrix Hamiltonian system
矩阵Hamilton系统
2)  Hermitian-Hamilton matrix
Hermitian Hamilton矩阵
1.
Let J=OI_n-I_nO be a unit symplectic matrix,A∈C~(2n×2n) is called to be a Hermitian-Hamilton matrix if A~H=A and (JA)~H=JA,the set of all 2n×2n Hermitian-Hamilton matrices is denoted by HHC~(2n×2n).
OIn-InO是单位辛矩阵,若A∈C2n×2n满足AH=A,(JA)H=JA,则称A为Hermitian Hamilton矩阵,所有2n×2n阶Hermitian Hamilton矩阵的全体记为HHC2n×2n。
3)  quasiHamilton matrix
拟Hamilton矩阵
4)  Hermitian-Hamiltonian matrix
Hermite-Hamilton矩阵
5)  Hamilton matrix
Hamilton矩阵
1.
Hamilton matrix and $H-2$ algebraic Riccati equations for linear continuous- t ime descriptor systems are studied.
研究线性连续广义系统的 Hamilton矩阵及 H2 代数 Riccati方程 。
2.
This paper goes into some properties of quaternion matrix,especially the inertial theorem of Hamilton matrix on quaternion field,and we proved the theorem by using opration of matrices.
本文讨论四元数体上矩阵的一些基本的性质,特别是四元数体上Hamilton矩阵的惯性定理,我们用纯矩阵的观点证明了Hamilton矩阵的规范形是唯一的,即Hamil-ton矩阵的惯性定理。
6)  Hamiltonian matrix
Hamilton矩阵
1.
An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse_Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of a Hamiltonian matrix.
 提出了一个稳定的有效的保结构的计算Hamilton矩阵特征值和特征不变子空间的算法,该算法是由SR算法改进变形而得到的· 在该算法中,提出了两个策略,一个叫做消失稳策略,另一个称为预处理技术· 在消失稳策略中,通过求解减比方程和回溯彻底克服了BunserGerstner和Mehrmann提出的SR算法的严重失稳和中断现象的发生,两种策略的实施的代价都非常低· 数值算例展示了该算法比其它求解Hamilton矩阵特征问题的算法更有效和可靠·
补充资料:Hamilton系统


Hamilton系统
HamQtoiiian system

  H如血朋系统【H翻山to面明匆创脚附:raM“月曰ouo.a cH-eTeMa」 由含有2九个未知量p=(p』,…,p,)(广义动量)与q=(q,,…,吼)(广义坐标)的常微分方程组一HaJT川幻n事修组(Ha面ltorha”哪teTn“f闪Ua-tlon‘) dP,_刁H刁叮,刁万 止卫止二一—.-二三二=止二乙‘f二l‘2.·…” dt刁q,’刁t刁Pi (l)描述的力学系统,其中H是(p,q,t)的某一函数,称为方程组(l)的H抽面物翻函数(Har回ton function)或Ha而!ton算子(Hax苗lton恤n)Halnjlton方程组亦称平则李程粤(~nhals岁temof闪UationS),并且在自治个削任(当H非t的显函数时)可称为保守系统(con-望n旧tives那记m),这是由于此时函数H(它常有能量含意)是首次积分(亦即能量在运动中保持不变). 在力学中Ha几亩ton方程组描述一个含有完全约束与具有位势(po让”tial)的力的运动(见H田面I翻川方程E以而lton闪Ua石0斑)).理论物理中许多问题也导致Halnjlton方程组或具有类似性质的偏微分方程,可以将后者看成Hamjlto们方程组的无穷维模拟来讨论.量子力学的方程可用Han川ton方程组的形式,其中几(t)与q,(t)不是时间的数值函数,而是满足一定的交换关系的依赖于t的自伴线性算子.H乏助ilt加方程组(依此词的平常“有限维”意义)在研究偏微分方程的某些渐近问题(波动方程的短波渐近式,量子力学中拟经典渐近式)中起重要作用. 各种变分原理与Ha仃川1011方程组有紧密联系.H七haho七原理(例如见!3])直接导致Halnjlton方程组,然而并非经常使用.最重要的原理是H如血阅-伍印orpa解。益原理(Han山to刀一伪tID脚dski Prindnle),即稳定作用原理,它直接产生1典户l攀方程(力学中的)(I刁脚刊笋闪mt沁飞(inn长℃玩I毗));若带有某种非退化的附加条件,则可以利用1确笋目代变换(L他-e址比姗出lblm)(见H助间翻旧函数(枷耐tonfL川c-tlon);H如川加犯方程(H舰回ton叫UationS))从至刁g份卿方程过渡到H助间ton方程组,如果在应用变分原理时只涉及一阶导数.如果变分原理涉及一阶以上导数,过渡到HaTnjlton方程组的M.B.ocrporPa那翎百法则变得更为复杂些(例如,见[41,圣110). 若H不是q‘的显函数,则几二常数为首次积分.在此情形下,坐标q‘称为嶂巧的(cyclic)(在某些情形下,它有角变量的物理或几何意义)或可忽视的(】朗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条