1) isotope shift
同位素移位
1.
A high-resolution isotope shift measurement of lithium isotopes in a suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the corresponding transition, can be used to determine the root-mean-square nuclear charge radii of these isotopes.
选择锂的合适跃迁 ,利用激光光谱技术高精度测量该跃迁的同位素移位 ,并扣除精确理论计算的质量移位贡献值 ,可以用来确定有关同位素的核电荷均方根半径 。
2) isotope shift
同位素位移
1.
The isotope shifts, hyperfine structure, spontaneous emission branch ratio of the first excited level and Doppler width of the atom vapor beam were measured using laser induced fluorescence.
采用原子蒸气束激光诱导荧光法测量钆原子的第一激发态的同位素位移及超精细结构、原子跃迁自发辐射的分支比和原子蒸气束的多普勒宽度。
2.
And the influence of the Hg isotope shifts and hyperfine structure on relative intensity of the Zeeman effect is analyzed.
1 nm绿谱线Zeeman效应相对强度的理论计算和实验值,分析了Hg同位素位移及超精细结构对Hg的 Zeeman效应相对强度的影响。
3) isotope shifts
同位素位移
1.
The isotope shifts between all seven stable isotopes ()~(142~146,148,150)Nd~+ and hyperfine structure spectra of()~(143,145)Nd()~+are measured by using collinear fast-ion-beam laser spectroscopy.
利用共线快离子束-激光光谱学方法测量了钕离子所有7个稳定同位素(A=142~146,148,150)之间的同位素位移和两个奇同位素(A=143,145)的超精细结构分裂。
2.
In atomic spectroscopy, the subject of isotope shifts is one of the few problems that links atomic and nuclear physics.
原子光谱中 ,同位素位移是少数几个能够将原子物理学和原子核物理学这两个不同的物理学分支联系起来的课题之一 。
4) isotopic shift
同位素位移
1.
The analytical equation of rotational level of molecule H\-2O\+ x(x =16,17,18) is devived at bending vibration state from the Schrdinger equation,and at the same time the isotopic shift of rotational level of its ground state and excitation state are studied.
从Schr dinger方程出发 ,导出H2 Ox(x=16,17,18)分子在弯曲振动态 (0v2 0 )下转动能级的解析表达式 ,并对其基态 (0 0 0 )和激发态 (0v2 0 )转动能级的同位素位移进行研
5) isotope shift
同位素移动
1.
Absolute frequency and isotope shift measurements of the cooling transition in singly ionized Indium;
铟离子冷却用跃迁频率与同位素移动的精密测量
6) Negative CIE
碳同位素负偏移
补充资料:同位素移位
由于原子核的结构不同,同一元素不同同位素的原子能级重心的位置(即不计超精细分裂的位置)有微小的相对移动。反映到发射或吸收光谱上,不同同位素的不计及超精细分裂时的谱线频率也有一个相对移动。这就是同位素移位。
引起同位素移位有两个原因。①不同同位素的核的质量差异,引起能级的位置与相应光谱线的频率的微小变化。对较轻的元素这种影响更大。例如在1H和2H(重氢)中,两种同位素的Hα线(656.3nm)的波数(堝)相差达4.15cm-1,波长相差达0.79nm。②不同同位素的核的形状、大小差异,引起能级位置的微小变化。这主要影响重元素中的某些能级。U的502.7nm谱线的同位素移位如上图所示〔虚线是235U线重心(C.G.)的位置〕。
参考书目
H.C.Kuhn,Atomic Spectra,Longmans,London, 1962.
引起同位素移位有两个原因。①不同同位素的核的质量差异,引起能级的位置与相应光谱线的频率的微小变化。对较轻的元素这种影响更大。例如在1H和2H(重氢)中,两种同位素的Hα线(656.3nm)的波数(堝)相差达4.15cm-1,波长相差达0.79nm。②不同同位素的核的形状、大小差异,引起能级位置的微小变化。这主要影响重元素中的某些能级。U的502.7nm谱线的同位素移位如上图所示〔虚线是235U线重心(C.G.)的位置〕。
参考书目
H.C.Kuhn,Atomic Spectra,Longmans,London, 1962.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条