1) nonhomogeneous elliptic equation
非齐次椭圆方程
1.
In this paper,a nonhomogeneous elliptic equation,which involves the critical Hardy-Sobolev exponentsand multi-singular Hardy terms,is studied.
运用变分法和Hardy-Sobolev不等式,讨论了一类带有临界指数且含多个Hardy奇异项的非齐次椭圆方程,证明了在一定条件下该方程至少存在一个解。
2) inhomgcneous linear elliptic equations
非齐次线性椭圆型方程
3) non-homogeneous quasilinear elliptic equation
非齐次拟线性椭圆方程
1.
In Chapter 4, we study by variational methods the existence of nontrivial solitary waves of the generalized Kadomtsev-Petviashvili equationIn the final chapter, we study a non-homogeneous quasilinear elliptic equation on the Orlicz-Sobolev space setting and obtain the existence of infinitely many solutions.
在最后一章,我们在Orlicz-Sobolev函数空间框架下研究了非齐次拟线性椭圆方程的无穷多解的存在性,其中Ω是R~N中边界光滑的有界区域,μ,λ∈R是两个参数。
4) two order nonhomogeneous quasilinear elliptic equations
二阶非齐次拟线性椭圆型方程
1.
In this paper , using geometric theory and special test function method, a sufficient condition for the solution of the fusion problem of weak solutions for a class of two order nonhomogeneous quasilinear elliptic equations is obtained - div A(x, ▽u) = B(x,u,Du).
使用几何测度论和特殊检验函数法,获得了一类二阶非齐次拟线性椭圆型方程-div A(x,▽u)=B(x,u,Du)弱解的拼集问题有解的一个充分条件。
5) nonlinear sub-elliptic system
非线性次椭圆方程组
1.
The paper concerns the regularity of weak solutions for nonlinear sub-elliptic systems under elliptic and controllable structure conditions on Carnot groups of step two.
利用分数次差商的迭加技巧,在二步Carnot群上研究非线性次椭圆方程组在椭圆型条件和可控制结构条件下弱解的正则性,得到了弱解的局部HW2,2估计。
6) homogeneous/non-homogeneous equations
齐次/非齐次方程
补充资料:线性椭圆型偏微分方程和方程组
线性椭圆型偏微分方程和方程组
inear elliptic partial differential equation and system
算子(1)的阶数是偶的,且对任意一对线性无关向量七和七’,多项式(关于T) 艺a。(x)(古+:心‘)“ !区卜m恰有m’=m厂2个带负虚部的根及带有同样数目的正虚部的根,则称算子(l)是真椭圆型的(properlyel-如出).当n)3时,任一椭圆型算子均是真椭圆型的,因此这个定义本质上仅对n=2时提出的. 在线性椭圆型偏微分方程理论中,利用方程右端项及边界条件的范数得到解的范数的先验估计方法起着重要的作用.C.H.EepHunre俪(见f6])开始系统地使用这些估计,较近的发展要归之于J.Schauder(见【7」).schauder估计关注于区域D内具有H61der连续系数的二阶线性椭圆型偏微分方程的解,且有两种形式.第一形式的估计(“内”估计)是在任何紧集KCD上利用suP}川及方程右端项的HOlder常数和模得到所含的直到二阶的导数和它们的H6】der常数的估计.而第二形式的估计(“直到边界”的估计)关注于边值问题.在此,同样一些量被估计了,但是在问题中的区域的闭包内进行,并且在估计中出现边界条件右端项的范数. Scha比ler估计已进一步推广到一般线性椭圆型偏微分方程和边值问题(见【71).这些估计的导出是基于位势理论.借助于单位分解,对它们可给出其局部特性,并且事情就化为这样一些奇异积分算子范数的估计,在内估计中此奇异积分算子表示为和基本解相联系的函数的一个卷积,而在直到边界的估计中则是与在某标准区域内相应边值问题的G代犯n函数相联系的函数的卷积.这些估计最早是在HOlder空间C“的度量下得到的,它们已推广到C仗汕leB空间评;(L,估计),并且是对广义解. 对于强椭圆型算子存在称为G脚婉不等式(G遏r-由瑶袖闪回lty)的先验估计,这个不等式是用另外方法得到的.它处于对研究边值间题的一个基本处理方法的中心(Hjlberl空间方法), 在线性椭圆型偏微分方程理论中,基本解处于一个重要的地位.对具充分光滑系数的算子(1),其基本解(仙幻田1℃nial solution)定义为满足条件 了“‘,(、)‘(;,,)‘;一,(,),对所有,‘C:的函数J(、,y)二J,(*).从广义函数理论的观点来讲,这意味着 Jy“占y,其中右端是Din‘的占函数. 线性椭圆型偏微分方程的基本解对这样一些方程是存在的二带有解析系数的方程(于是它们本身是解析的),具无穷次可微的系数的方程(于是它们属于C。类的)以及许多另外一些方程,这些方程的系数具有较弱的限制.对于由最高阶爪=Zm’项组成的常系数椭圆型算子L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条