1) numerical statistic iterative method
数值统计迭代
2) gathering statistics iterative method
集值统计迭代法
1.
Based on the summarization of weighed set and assessment matrix methods in the fuzzy integrated estimation theory,the paper uses the degrce analyse method and gathering statistics iterative method to determinate the estimation matrix and weighted set for the sake of objectivity.
在总结模糊综合评判中权重集和评判矩阵确定方法的基础上,为减小结果中的主观因素的影响,文中提出了一种使用集值统计迭代法来确定权重集、用程度分析法来建立评判矩阵的方法,并用来评判某无人机的可靠性,最后给出实例来说明方法的有效性和方便性。
3) iterations and numerical simulation
迭代数值计算
4) numerical iteration
数值迭代
1.
Using the method of discretization and numerical iteration, the precise visualization results of the distributions of electric field and charges are obtained by Matlab numerical simulation.
利用离散化与数值迭代的方法,通过Matlab数值仿真得出了其电场和电荷分布的较精确的可视化结果。
2.
With the numeric calculating method applied to the reservoir flood routing operation,we introduced the numerical iteration,a new method which makes porgramme designing for flood routing operation easier.
将数值算法应用于水库防洪调算 ,提出一种适宜计算机程序设计的调洪演算新方法———数值迭代法 。
5) value iteration
数值迭代
1.
By the equivalent Markov process, formulas of performance potentials and average-cost optimality equations for SMCPs are derived, and a policy iteration algorithm and a value iteration algorithm are proposed, which can lead to an optimal or suboptimal stationary policy in a finite number of iterations.
利用等价Markov过程的方法,导出了SMCP的性能势公式和平均代价最优性方程,给出了求解最优或次最优平稳策略的策略迭代算法和数值迭代算法,并证明了算法的收敛性。
2.
A fast value iteration algorithm, which leads to an ε optimal stationary policy, is proposed and the convergence of thi.
文章采用无穷小生成元和性能势的基本性质 ,直接导出了平均代价模型在紧致行动集上的最优性方程及其解的存在性定理 ,提出了求解ε 最优平稳控制策略的数值迭代算法 ,并给出了这种算法的收敛性证明 。
6) numerical iterative
数值迭代
1.
When the Jacobian matrix is rank-deficient or very ill-conditioned in numerical iterative process to solve the nonlinear least square problem,more methods with standard approaches such as the gauss-newton method or modified gauss-newton method will be in failure.
当非线性最小二乘问题的数值迭代解算方法其Jacobian矩阵是秩亏或者严重病态时,诸多方法如高斯-牛顿法、修正高斯-牛顿法等将会失效。
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条