1)  similarity function
自模函数
1.
Based on the characteristic of the self-simulation of the vertical temperature profile and the property that the integral of similarity function is equal to constant at each layer, the sea was divided into 4 layers.
文中,以水温垂直剖面的自模性将其由T-Z分布变为θ-η剖面为基础,在考虑海面加热,忽略热平流效应和来自海底的热通量情况下,将海洋分为4层,并在各层内利用其自模函数的积分趋于常量的特性,对引入自模函数的热传导方程进行推导运算,导出描述含中层冷水垂直热结构7个特征量的闭合方程组。
2)  modularization
自模块化
3)  Self-simulating theory
自模理论
4)  do-it-yourself mode
三自模式
5)  non self stimulated domain
非自模化
1.
The experiments of aerodynamic aeroacoustic performance of axial fans in non self stimulated domain are carried out.
本文对非自模化区域内小型风机的气动声学性能进行了实验研究,详细讨论了在非自模化区域内动叶叶尖间隙对气动声学性能的影响,并与自模化区域内的影响作了对比分析。
6)  self simulation
自模性
1.
In this paper, two expressions of non dimensional temperature and depth are proposed for the positive and negative temperature gradient layers of intermediate cold water, based on the experience in studying vertical ocean thermal structure using non dimensional self simulation function of vertical temperature profile.
1 5℃ ,证明了含中层冷水的垂直热结构亦存在自模性 ,所提出的无因次经验表达式具有可靠性 ,纠正了认为自模函数的建立仅适用于单跃层结构的观点 ,并为进一步建立黄海中层冷水垂直热结构数值预报模式奠定了实验基
参考词条
补充资料:模函数
      定义在单位圆(或上半平面)内部且以其周界为自然边界的某种特殊解析函数。解析函数的许多经典理论如整函数理论中的皮卡定理、正规族理论中的一些判定定理,都可借助模函数的性质来证明。
  
  如图1,在z平面中取单位圆│z│<1,在其周界上按反时针向依次任取三点A,B,C,并作一圆弧三角形ABC,其每边均与│z│=1正交,构成一区域D0(图中斜线区)。在w平面中实轴上取定三点α(=0),β(=1),γ(=∞)。由共形映射的黎曼定理,存在一单叶解析函数w =??(z),把D0映到w 的上半平面,并使A,B,C分别映到α,β,у。根据对称性原理,w =??(z)可解析开拓到圆弧三角形Dó中,这里Dó是D0关于AB 弧的对称反演区域(C点反演成圆周│z│=1上另一点C┡),而函数值则取在w 的下半平面,此下半平面与原上半平面沿线段αβ相粘连。同理,w=??(z)又可分别解析开拓到D0的关于CA弧和BC弧的对称圆弧三角形中,其函数值也在w 的下半平面中,它们分别与上半平面沿半直线 γα 和 βγ 相粘连。这样,得到了│z│<1中的一圆弧六边形区域,w =??(z)在其中解析,取值于整个w 平面中如上粘连的一个上半平面和三个下半平面。再以此六边形的各边进行反演,则w=??(z) 又可再次解析开拓到|z|< 1中边数更多的圆弧形区域中(仍在|z|<1内),取值又回到w 的上半平面,并与上面已取得的下半平面分别沿αβ,βу,уα之一相粘连。如此无限继续下去,则w =??(z)就开拓成为整个│z│< 1内的解析函数,其所取之值在w平面上形成一无限层的黎曼曲面。w =??(z)称为模函数。其反函数z=φ(w)是整个w平面除0,1,∞外的多值解析函数,或者可说成是上述黎曼曲面上的单值解析函数。
  
  模函数w =??(z)单值解析于|z|<1内,显然不取值0,1,∞,且当z从单位圆内部以任意方式趋于其周界上一点时,不可能有确定的极限值,因此|z|=1是其自然边界,即它不可能再向|z|=1之外进行解析开拓。
  
  也可用一分式线性变换t=ω(z),|z|<1,把z变到t平面的上半平面,使A,B,C 分别变成实轴的α,b以及с=∞,而D0变成区域墹 0(图2),当D0关于其一边界圆弧作对称反演时,相应地墹 0也关于其相应边作对称反演。
  
  设t=ω(z)的反函数为z=λ(t),则
  w =??(z)=??(λ(t))=φ(t)就把t的上半平面映成w平面的上述黎曼曲面。φ(t)也称为模函数,其性质本质上与??(z)相类似。
  
  如果把构成模函数w=??(z)过程中所作的种种关于圆弧的反演变换记为T1,T2,...,则对于任何Tj,??(z)与??(Tjz)互为共轭。因此,对任何两个Tj,Tk,恒有??(z)=??(TjTkz),即当z经过两次这类反演后,其函数值??(z)不变。如果把偶数个这种反演及其逆作为元素,它们生成一变换群G,则当z经G任一元变换后,函数值??(z)不变。称G为模函数w=??(z)的不变群,也称??(z)为关于群G 的自守函数(见椭圆函数)。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。