说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 第二临界情况
1)  the second critical case
第二临界情况
1.
Then by generalizing the criterion, we obtained the criterion for determining the stability of a homoclinic cycle for the second critical case.
在此基础上,运用推广的后继函数法,获得了第二临界情况下同宿环的内稳定性判据,事实上,推广的后继函数法可对以往的结果和本文的结果用统一的方法给予证明,并可向更高临界情况推广。
2)  the critical case
临界情况
1.
In this paper,we mainly discuss a class of second-order quasi-linear system :which is in the critical case, with infinite initial value or boundary value.
本文主要讨论临界情况下一类二阶拟线性方程组 μy″=A(y,t)y′+μf(y,t)(其中y=(y1,y2)~T)的无穷大初值问题和边值问题。
2.
In this paper,we discuss a kind of second-order quasilinear system : ey" = A(y,t)y + (?)f(y,t) (*) which is in the critical case.
本文是对临界情况下二阶拟线性系统εy″=A(y,t)y′+εf(y,t)(*)的一种尝试。
3)  second critical angle
第二临界角
4)  first critical case
第一临界情形
1.
The locally topological structure of higher order singular point for the plane quartic system in the first critical case is discussed, and a criteria by the coefficients of polynomials is given.
讨论了第一临界情形下的平面四次系统高次奇点的局部拓扑结构,并给出利用多项式系数的判断准
2.
This paper discuss the locally topological structure of higher order singular point for the plane cubic system in the first critical case and give a criterion by the coefficients of polynomials.
讨论了第一临界情形下的平面三次系统高次奇点的局部拓朴结构,并给出利用多项式系数的判断准则。
5)  third critical case
第三临界情形
1.
The qualitative structure is discussed near the higher singular point of plane cubic differential system in the third critical case,a criteri on by the right-hand polynomial coefficients is given,and some results of the[1]are modified and improved.
讨论了第三临界情形下的平面三次微分系统高次奇点附近的定性结构,给出由右端多项式系数的判断准则,并纠正和改进了[1]的某些结果。
6)  critical condition
临界状态,临界条件,临界情况
补充资料:各向异性第二临界磁场(anisotropicsecondcriticalmagneticfield)
各向异性第二临界磁场(anisotropicsecondcriticalmagneticfield)

在主轴坐标系中,设磁场平行于主轴Z,由各向异性GL方程给出的各向异性第二临界磁场为

Hc2∥(T)=`\frac{2|\alpha(T)|(m_1^\**m_2^\**)^{1/2}}{\mu_0\hbare^\**}`

$=sqrt{2K_1K_2}H_c(T)$

这里α(T)为GL自由能密度展式系数,mμ*和Kμ(μ=1,2,3)分别为库珀对有效质量和GL参量的μ分量,e*为库珀电子对电荷量,$hbar$是除以2π的普朗克常数,μ0是真空磁导率,Hc(T)为热力学临界磁场。对层状结构氧化物超导体,GL参量Ka≈Kb=Kab,并有

Hc2∥(T)=$sqrt2K_{ab}H_c(T)$

Hc2⊥(T)=$(2K_{ab}K_c)^{1/2}H_c(T)$

Hc2∥和Hc2⊥分别为磁场与主轴Z(或晶轴C)平行和垂直时的第二临界磁场,其物理性质含义参见“第二临界磁场”。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条