1) fractional k-deleted
分数k-消去图
1.
A graph G is fractional k-deleted if there exists a fractional k-factor after deleting any edge of G.
设G是一个图,k(?) 2是一个整数,若对于图G的任一条边e,G-e都存在一个分数k-因子,则称G是一个分数k-消去图。
2) k-deleted graph
k-消去图
1.
Two conditions for a bipartite graph to be a k-deleted graph;
二分图为k-消去图的 2个条件(英文)
2.
A graph G is called a(g,f)-k-deleted graph if every k edges does not belong to a(g,f)-factor.
如果图G的任意k条边不属于它的一个(g,f)-因子,则称图G是一个(g,f)-k-消去图。
3.
Graph G is called a k-deleted graph if G-e has a k-factor for each edge e.
图 G的一个 k-正则支撑子图称为 G的 k-因子 ,若对 G的任一边 e,图 G- e总存在一个 k-因子 ,则称 G是 k-消去图 。
3) fractional deleted graph
分数消去图
4) fractional k-edge-deleted
分数k-边-可消去的
1.
G is called fractional k-edge-deleted if deleting E ■E(G),|E |=k,there exists a fractional perfect matching.
若对G的每一条边e都存在G的一个分数(g,f)-因子G_h使得h(e)=0,其中h是G_h的示性函数,则称G是一个分数(g,f)-消去图,若在G中删去E′■E(G),|E′|=k后,所得图有分数完美匹配,则称G是分数k-边-可消去的。
5) fractional k-deleted graph
分数κ-消去图
1.
Binding number conditions for fractional k-deleted graphs;
图的联结数与分数κ-消去图
6) fractional vertices-deletable
分数n-点消去图
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条