1) sub metapositive definiteness matrix
亚次正定矩阵
1.
The definition of the extended sub metapositive definiteness matrix and n×n real matrix meta Volterra multiplicator are given.
推广了亚次正定矩阵的概念 ,即广义亚次正定矩阵和实方阵的次Volterra乘子的概念 ,讨论并给出了广义亚次正定矩阵的一些基本性质及实方阵存在次Volterra乘子的条件。
2.
The probrem of inegualities on the determinant of sub metapositive definiteness matrix is discussed in this paper.
较为详细的讨论了亚次正定矩阵行列式的不等式问题 ,将实对称正定矩阵的一些著名结果如Minkowki不等式 ,凸性不等式及Hadmand乘积不等式以及近期的一些结果推广到亚次正定矩阵上。
2) complex metapositive sub-definite matrix
复次亚正定矩阵
1.
The sub-definite of matrix generalize Fischer s results on a positive definite matrix to the complex metapositive sub-definite matrix,to get a new conlusion.
笔者讨论了复次亚正定矩阵的一些性质及行列式不等式,解决A,A n2的上界、下界问题,进一步研究了分块矩阵的次正定性,将Fischer关于正定矩阵的结果推广到复次亚正定矩阵上,从而得到新的结论;利用A A次正定性,推导出Khatri-Rao乘积的次正定性。
3) metapositive subdefinite matrix
次亚正定矩阵
1.
In this paper,we get some necessary and sufficient conditions about the metapositive subdefinite matrix.
按次对角线给出的次亚正定矩阵的若干充分必要条件 。
2.
In this paper,we introduce the concept of metapositive subdefinite matrix over a stronger P-divisionring Ω,necessary and sufficient conditions for existence and general expression of metapositive aubdefinite solutions are obtained for the matrix equation AXB=C over
本文在加强P除环Ω上引入了次亚正定矩阵的概念 ,给出了Ω上的矩阵方程AXB =C有次亚正定解的充要条件及解的一般表达式。
3.
The concept of metapositive subdefinite matrix and its a series necessary and sufficient condition are given, and has reached many new results, and popularizes to one kind non-symmetric matrix on about the wellknown determinant inequality that the matrix is symmetrically positive definite Hadamard, Minkowski, Ostrowski-Taussky, Ky Fan and Openheim etc.
给出了次亚正定矩阵的概念和它的一系列充要条件 ,得出了许多新的结果 ,将 Hadamard,Minkowski,Ostrowski-Taussky,Ky Fan,Openheim等关于对称正定矩阵的著名行列式不等式推广到了一类非对称矩阵上 。
4) minor positive (semi)definite matrix
次亚(半)正定矩阵
5) extended sub metapositive definiteness matrix
广义亚次正定矩阵
1.
The definition of the extended sub metapositive definiteness matrix and n×n real matrix meta Volterra multiplicator are given.
推广了亚次正定矩阵的概念 ,即广义亚次正定矩阵和实方阵的次Volterra乘子的概念 ,讨论并给出了广义亚次正定矩阵的一些基本性质及实方阵存在次Volterra乘子的条件。
6) metapositive definite matrix
亚正定矩阵
1.
In this paper,Hadamard s inequality of metapositive definite matrix is studied,generalized Hadamard s inequality and Hadamard s anti-inequality of locally metapositive definite matrix are obtened,and the known conclusions are improved.
研究了亚正定矩阵的广义Hadamard不等式,得到了局部亚正定矩阵的广义Hadamard不等式和反向Hadamard不等式,改进了现有结论。
2.
Based on the relations between the eigenvalues of R(E) and S(E),the sufficient conditions for λ1E1+λ2E2 and λ1E1+λ2E2+λ3E3 to be metapositive definite matrix is presented.
研究了幂等矩阵E的性质,利用E的实对称分支R(E)与反对称分支S(E)的特征值之间的关系给出了λ1E1+λ2E2和λ1E1+λ2E2+λ3E3为亚正定矩阵的充分条件。
3.
we introduce the concept of the metapositive definite matrix over the stronger p division ring and give some basic properties,then discuss properties of block matrixes,Kronecker product and Hadamard product of these matrixes.
在加强P除环上引入了亚正定矩阵的概念 ,讨论了分块矩阵 ,Kronecker积与Hadamard积的亚正定。
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条