1) covariant form
协变形式
1.
Four-Dimensional Covariant form of Constitutive Relationship and Potential Equation in Moving Medium and Retarded Solution;
运动媒质本构关系和势方程的四维协变形式及其推迟解
2.
Based on the fourdimensional covariant form of Maxwells field equation in vacuuum environment,fourdimensional covariant form of Maxwells field equation in media has been deduced.
在真空中麦氏方程组四维协变形式的基础上,推导出介质中麦氏方程组的四维协变形式。
2) Four Dimensional Covariant Form
四维协变形式
1.
Four Dimensional Covariant Form of Electromagnetic Field Wave Equations;
电磁场波动方程的四维协变形式
3) covariant form of electromagnetic law
电磁规律的协变形式
4) compatibility of deformation
变形协调
1.
The compatibility of deformation may occur on tube thread according to dimension of collar thread, which is helpful in improving the connection quality.
油管螺纹与接箍螺纹联接后会发生变形协调 ,有利于提高螺纹联接质量。
5) deformation compatibility
变形协调
1.
Discussion of the forming mechanism of reflective cracks in pavement from the angle of deformation compatibility;
从变形协调关系看路面反射裂缝的形成机理
2.
Phillips's serise/parellel model has been employed, Transverse modulus of squarefibrous composites are analysed from longitudinal deformation compatibility, Then, by virture of relative volume fraction application are discuss for a wide range of fire section.
本文采用Phillips提出的串联/并联模型,考虑到沿纵向纤维与基体的变形协调,利用材料力学方法,求得具有正方形截面的纤维增强复合材料的横向模量,进而讨论了其它形状纤维截面的应用。
3.
According to the deformation compatibility relationship between corroded steel bars and concrete,on the basis of the constitutive relationship which can reflect the mechanical properties of corroded steel bars and concrete respectively and the bond-slip constitutive law,a nonlinear differential equation for the beam,expressed in the form of the tensile force(N) o.
通过将锈蚀钢筋混凝土梁视为由锈蚀钢筋和混凝土组成的存在粘结滑移的组合梁,以锈蚀钢筋与混凝土之间的变形协调条件为依据,引入反映锈蚀钢筋混凝土力学性能的本构关系和锈蚀钢筋与混凝土之间的粘结-滑移本构关系,推导出以纵向受拉钢筋拉力N表达的锈蚀钢筋混凝土梁非线性微分方程。
6) distortion coordination
变形协调
1.
Method for calculating settlement of composite ground under rigid foundation considering distortion coordination;
考虑变形协调的刚性基础复合地基沉降计算
2.
Based on the allowable stress theory,considering the stress characteristics of reinforcing layer before and after reinforcement,and guaranteeing the reinforcing layer and the original structure distortion coordination as a premise,a equation about reinforcing layer thickness section destruction was established before reinforcement to determine the reasonable thickness of reinforcing layer.
以容许应力理论为基础,考虑利用增大截面法加固主拱圈前后的受力特点,并以保证加固层与原结构变形协调为前提,在加固前建立一个关于加固层厚度的截面破坏方程,通过合理的解方程来确立加固层最小厚度,从而为快速确定最小加固层厚度提供合理的理论保证,并减少试算和验算的工作量,对石拱桥加固理论化有着一定的推动作用。
补充资料:电磁规律的协变形式
狭义相对论指出,对于一切惯性参照系,物理规律都是相同的,而且不同惯性系之间的变换关系是洛伦兹变换。因此,所有描述基本物理规律的方程式,都应该在洛伦兹变换下保持不变。这种不变性就称为洛伦兹不变性。
为了显示一个或一组物理方程的洛伦兹不变性,通常将它表示成这样的形式,使得方程中各项在洛伦兹变换下都具有确定的,并且彼此相同的变换性质。这样,当从一个惯性参照系变换到另一个惯性参照系时,就能得到相同的方程式。具有上述形式的方程就称为协变形式的方程。
电磁量的洛伦兹变换 洛伦兹变换是一个四维变换,因此在洛伦兹变换下的矢量常称为四维矢量或简记作4-矢量。例如三维空间的坐标(x1,x2,x3)配上时刻t就合成一个4-矢量(x0,x1,x2,x3),其中x0=сt,с为真空中光速。此矢量称为四维时空坐标xμ(μ=0,1,2,3)。在电磁量(本条采用高斯单位制)中,通常的三维电流密度(j1,j2,j3)同电荷密度 ρ 配成一个四维矢量(j0,j1,j2,j3),其中j0=ρс。这个矢量就称为四维电流密度 jμ。洛伦兹规范下的电磁矢量势(A1,A2,A3)和标量势嗞也配成一个 4-矢量(A0,A1,A2,A3),其中A0=嗞,称为四维电磁势Aμ。当两个惯性参照系s和s′的空间坐标轴取得彼此平行而且s′沿x轴方向以速度v相对s运动时(并取t=t′=0为两参照系坐标原点相重合的时刻)两者时空坐标间的变换关系为: (1)
此即时空坐标的洛伦兹变换。根据矢量的变换性质,s和s┡中电流密度和电磁势也具有类似的变换关系: (2)
由此可以得出,如果在s参照系中有一静止的均匀导体回路,其内j10而ρ=0,则在s′参照系中将观测到ρ′0(见图)。如从s′参照系观测,图中AB段就将带负电,而CD段将带正电。上述电荷的出现可用洛伦兹收缩来说明。与此相应,在s参照系中嗞=0,只有A;而在s′参照系中嗞 ┡和A′都将不为零。
在洛伦兹变换下,电场强度E和磁感应强度B合起来按一个二阶张量来变换,此张量用矩阵表示为:
它的分量记作Fμv(μ、v从0到3),并称为电磁场场强张量。在上述两个惯性参照系s和s′中的场强值,有如下的关系:E'1=E1, B'1=B1,
(3)
当略去的小项时,上式可写作 。 (4)
v代表在s系中所观测的s′系的速度。这样,若在s系中只有电场或只有磁场,则在s′系中将同时有电场和磁场存在。以上结果表明了电场同磁场之间深刻的内在联系,实际上它们是统一的电磁场场强张量的不同分量。
电磁场的能量密度u和能流密度(S1,S2,S3)以及动量密度(g1,g2,g3)和动量流密度φij(i,j取1到3)合起成一个二阶张量
此张量称为电磁场的能量-动量张量,并用Tμv表示。
电磁规律的协变形式 麦克斯韦方程组中的两个方程, (5)
可以合起来用 (6)
表示,其中
v=0代表式(5)的第一式,v=1,2,3代表式(5)的第二式。代表张量Fμυ的四维散度,它是一个四维矢量。这样式(6)左右两方都是四维矢量,符合协变要求。
麦克斯韦方程组中的另外两个方程 (7)
可以合起来用 (8)
表示。注意,前者代表
这是因为洛沦兹变换不是正交变换,故对于矢量和张量还必须区别为逆变和共变两类。前面所说的xμ、jμ、 Aμ和这里的微分算符都是逆变矢量,而微分算符则为共变矢量。式 (8)中每一项都代表一个三阶的逆变张量,故该式是协变的。
这里, 对于指标(μ,v,σ)为完全反对称的,故式(8)实际上只包含四个独立的方程,它们的(μ,v,σ)可取为(1,2,3),(2,3,0),(3,0,1)和(0,1,2)。当(μ,v,σ)取(1,2,3)时,式(8)相应于 墷·B=0,而当(μ,v,σ)取(2,3,0),(3,0,1)和(0,1,2)时,式(8)相应于。
电荷守恒定律, (9)
其协变形式为, (10)
即四维电流密度的四维散度为零。而洛伦兹规范下矢量势和标量势的方程 (11)
其协变形式即为: (12)
式中,
在洛伦兹变换下,三维力密度(f1,f2,f3)和功率密度w亦配成四维矢量(f0,f1,f2,f3),其中,并称为四维力密度,用fμ表示。这时,洛伦兹力公式:, (13)
和功率公式ω=E·E。 (14)
可以合起来写成, (15)
其中jv表示(ρс,-j1,-j2,-j3)为一共变矢量。式(15)在μ=0时化为式(14),而在μ=1,2,3时化为式(13)。式(15)两侧都是逆变矢量,因而方程是协变的。
能量和动量守恒定律, (16)
如前所述s为能流密度;Φ为动量流密度,系张量;g为动量密度,,可以合起来写成下述协变形式的方程:。 (17)
以上结果还显示了电磁场能量和动量之间密切的内在联系。
也可采用与以上不同的另一种数学描述,即不引入x0=сt,而引入一个虚数x4=iсt来构成四维时空矢量(x1,x2,x3,x4),在这种描述下,洛伦兹变换形式上为一个正交变换,于是就不必区分共变和逆变两类矢量和张量,从而在数学上得到了简化。
为了显示一个或一组物理方程的洛伦兹不变性,通常将它表示成这样的形式,使得方程中各项在洛伦兹变换下都具有确定的,并且彼此相同的变换性质。这样,当从一个惯性参照系变换到另一个惯性参照系时,就能得到相同的方程式。具有上述形式的方程就称为协变形式的方程。
电磁量的洛伦兹变换 洛伦兹变换是一个四维变换,因此在洛伦兹变换下的矢量常称为四维矢量或简记作4-矢量。例如三维空间的坐标(x1,x2,x3)配上时刻t就合成一个4-矢量(x0,x1,x2,x3),其中x0=сt,с为真空中光速。此矢量称为四维时空坐标xμ(μ=0,1,2,3)。在电磁量(本条采用高斯单位制)中,通常的三维电流密度(j1,j2,j3)同电荷密度 ρ 配成一个四维矢量(j0,j1,j2,j3),其中j0=ρс。这个矢量就称为四维电流密度 jμ。洛伦兹规范下的电磁矢量势(A1,A2,A3)和标量势嗞也配成一个 4-矢量(A0,A1,A2,A3),其中A0=嗞,称为四维电磁势Aμ。当两个惯性参照系s和s′的空间坐标轴取得彼此平行而且s′沿x轴方向以速度v相对s运动时(并取t=t′=0为两参照系坐标原点相重合的时刻)两者时空坐标间的变换关系为: (1)
此即时空坐标的洛伦兹变换。根据矢量的变换性质,s和s┡中电流密度和电磁势也具有类似的变换关系: (2)
由此可以得出,如果在s参照系中有一静止的均匀导体回路,其内j10而ρ=0,则在s′参照系中将观测到ρ′0(见图)。如从s′参照系观测,图中AB段就将带负电,而CD段将带正电。上述电荷的出现可用洛伦兹收缩来说明。与此相应,在s参照系中嗞=0,只有A;而在s′参照系中嗞 ┡和A′都将不为零。
在洛伦兹变换下,电场强度E和磁感应强度B合起来按一个二阶张量来变换,此张量用矩阵表示为:
它的分量记作Fμv(μ、v从0到3),并称为电磁场场强张量。在上述两个惯性参照系s和s′中的场强值,有如下的关系:E'1=E1, B'1=B1,
(3)
当略去的小项时,上式可写作 。 (4)
v代表在s系中所观测的s′系的速度。这样,若在s系中只有电场或只有磁场,则在s′系中将同时有电场和磁场存在。以上结果表明了电场同磁场之间深刻的内在联系,实际上它们是统一的电磁场场强张量的不同分量。
电磁场的能量密度u和能流密度(S1,S2,S3)以及动量密度(g1,g2,g3)和动量流密度φij(i,j取1到3)合起成一个二阶张量
此张量称为电磁场的能量-动量张量,并用Tμv表示。
电磁规律的协变形式 麦克斯韦方程组中的两个方程, (5)
可以合起来用 (6)
表示,其中
v=0代表式(5)的第一式,v=1,2,3代表式(5)的第二式。代表张量Fμυ的四维散度,它是一个四维矢量。这样式(6)左右两方都是四维矢量,符合协变要求。
麦克斯韦方程组中的另外两个方程 (7)
可以合起来用 (8)
表示。注意,前者代表
这是因为洛沦兹变换不是正交变换,故对于矢量和张量还必须区别为逆变和共变两类。前面所说的xμ、jμ、 Aμ和这里的微分算符都是逆变矢量,而微分算符则为共变矢量。式 (8)中每一项都代表一个三阶的逆变张量,故该式是协变的。
这里, 对于指标(μ,v,σ)为完全反对称的,故式(8)实际上只包含四个独立的方程,它们的(μ,v,σ)可取为(1,2,3),(2,3,0),(3,0,1)和(0,1,2)。当(μ,v,σ)取(1,2,3)时,式(8)相应于 墷·B=0,而当(μ,v,σ)取(2,3,0),(3,0,1)和(0,1,2)时,式(8)相应于。
电荷守恒定律, (9)
其协变形式为, (10)
即四维电流密度的四维散度为零。而洛伦兹规范下矢量势和标量势的方程 (11)
其协变形式即为: (12)
式中,
在洛伦兹变换下,三维力密度(f1,f2,f3)和功率密度w亦配成四维矢量(f0,f1,f2,f3),其中,并称为四维力密度,用fμ表示。这时,洛伦兹力公式:, (13)
和功率公式ω=E·E。 (14)
可以合起来写成, (15)
其中jv表示(ρс,-j1,-j2,-j3)为一共变矢量。式(15)在μ=0时化为式(14),而在μ=1,2,3时化为式(13)。式(15)两侧都是逆变矢量,因而方程是协变的。
能量和动量守恒定律, (16)
如前所述s为能流密度;Φ为动量流密度,系张量;g为动量密度,,可以合起来写成下述协变形式的方程:。 (17)
以上结果还显示了电磁场能量和动量之间密切的内在联系。
也可采用与以上不同的另一种数学描述,即不引入x0=сt,而引入一个虚数x4=iсt来构成四维时空矢量(x1,x2,x3,x4),在这种描述下,洛伦兹变换形式上为一个正交变换,于是就不必区分共变和逆变两类矢量和张量,从而在数学上得到了简化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条