1) irregular assumption
非正则假设
2) regularity assumption
非则性假设
3) orthogonality hypothesis
正交假设
5) non-null hypothesis
非虚假设
1.
Objective: This paper concerns the design and analysis of phase IV clinical trial under non-null hypothesis.
目的:论述非虚假设IV期临床试验的设计与分析。
2.
Objective:The matched-pair design is generalized to the situation with non-null hypothesis and stratification.
目的:将配对设计加以扩展,以适应非虚假设和分层。
6) non-regular point
非正则点
1.
Because of the non-completion of the concepts of regularity in some textbooks on mathematical analySis and differentical geometry,this paper investigate the geometrical characteristics and decisive methods of all types of non -regular points on curves according to the concepts of regular curves.
研究曲线上各类非正则点的几何特征及判别方法。
补充资料:非正则奇点
非正则奇点
irregular singular point
非正则奇点[i川铆山r应粤山r脚向t;Ilpper”,p.四oeo6翻、,,] 出自线性常微分方程解析理论的一个概念.设A(t)为nxn矩阵,它在t。笋的的有孔邻域内是全纯的,且在t。处有一奇点. 这时,点t。称为方程组 交=注(t)x(*)的奇点.非正则奇点有两个不等价的定义.按照第一个定义,t。称为(*)的非正则奇点,如果A(。)在亡。处具有阶数高于l的极点(见微分方程解析理论(analytic theoryofd迁比ren垃alequa石。朋)).按照第二个定义,t。称为(*)的非正则奇点,如果不存在数a>0,使得当t沿射线方向趋向于t。时,每个解x(t)的增长不比}t一t。!一“快(见〔31).情况t。=的,可通过变换t~t一’,化为情况t。二0.非正则奇点有时称为强奇点(例如,见E七朋d方程(Bessel闪皿石。n)).解在非正则奇点的一个邻域内可以作渐近展开;H.Poinca记最早研究了这个问题(【l」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条