说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对称次调和解
1)  symmetric subharmonics
对称次调和解
2)  infinity and dense distribution of symmetric subharmonics
对称次调和解的无穷个数和稠分布
3)  symmetric and harmonious
对称调和
1.
By studying the traditional methods, such as genetic algorithm, neural networks, grey theory, nearest-neighbor, Wavelet , the paper brings forward many new methods including Improved symmetric and harmonious genetic algorithm, Improved grey coupling model , the coupling mode.
通过对传统的遗传算法、神经网络、灰色理论、最近邻思想、小波分析研究,提出了改进的对称调和遗传算法、改进的灰色耦合模型和最近邻神经网络耦合模型,在此基础上将基于经验模态分解的希尔伯特-黄变换、集对分析等方法引入水电科学成功构建了水文径流预测、水资源评估、水库优化调度、水电站经济效益综合评价、电力负荷预测等多种模型,并对模型进行了实证研究,较好地解决了水文水资源中的一些复杂性问题。
4)  subharmonic solutions
次调和解
1.
Periodic and Subharmonic Solutions of a Class of Superquadratic Hamiltonian Systems;
一类“超二次”Hamilton系统的周期解和次调和解
2.
Some existence theorems are obtained for subharmonic solutions of a class of local non-quadratic Hamiltonian systems by using minmax methods.
运用极小极大方法得到一类局部非二次的Hamilton系统的次调和解的存在性定理。
3.
The subharmonic solutions of the system can be obtained by using Mountain Pass Lemma.
对每个k∈N,利用山路引理的一个变形,可以证明上述系统存在非平凡的2kT-周期解(即次调和解)。
5)  subharmonic solution
次调和解
1.
The existence of harmonic solution and infinitely many subharmonic solutions for Duffing equation x″+g(x)=p(t) are proved.
摘要:证明了Duffing方程x″+g(x)=p(t)的调和解及无穷多的次调和解的存在性,其中g′(x)是奇函数,满足g'(x)>0且limfor(x→+∞)g(x)=a>0,周期为2π的连续函数p(t)满足|p(t)|
2.
An existence theorem is obtained for infinitely distinct subharmonic solutions of a class of nonautonomous superquadratic homogeneous second order Hamiltonian systems by the constrained minimizing methods.
用约束极小化方法得到了一类非自治超二次齐次二阶Hamiltonian系统无穷多个不同的次调和解的存在性。
3.
Bifurcations of subharmonic solutions of order m of a planar periodic perturbed system near a hyperbolic limit cycle are discussed.
研究了一给定平面自治系统的双曲极限环在周期扰动下m阶次调和解的分支问题 ,用Poincar啨映射 ,通过变尺度方法 ,获得了判别m阶次调和解的存在条件 ,最后给出了一个实
6)  symmetrical demodulator
对称解调器
补充资料:A1-Cu-Co合金中十次对称准晶单晶体及其衍射图


A1-Cu-Co合金中十次对称准晶单晶体及其衍射图


  ‘ Al Cu—Co合金中十次对称准晶堕晶体e1)及其衍射圈(z) 中国科学盹垒禹研览听供稿
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条