1) diagonalization method
对角化方法
1.
Under some hypotheses,the diagonalization method is applied to study the existence of solution for a class of vector third differential systems with two point or three point boundary problem.
在适当的条件下 ,应用对角化方法研究一类向量三阶微分方程二点或三点边值问题解的存在性 ,并获得解及它的一、二阶导数的估
2.
By using diagonalization method, this paper considers the existence and asymptotic behaivior of solution of the nonlinear Robin boundary value problem containing two small parameters,and obtaineds the uniformly valid asymptotic expansion of arbitrary order of the solution.
利用对角化方法研究含两个小参数的非线性Robin边值问题解的存在性和解的渐近性态,获得解的任意阶的一致有效的渐近展开式。
3.
The analysis is based on the diagonalization method and the characteristic method.
分析过程基于对角化方法和特征线法。
2) complete diagonalization method
完全对角化方法
1.
The mechanism of influence of the spin quartets and doublets of d~3 ion on the spin_Hamiltonian (SH) parameters(including zero_field splitting(ZFS) and g_factors)of the ground state ~4A_2(~4F) is discussed in terms of complete diagonalization method(CDM) under trigonal symmetry and tetragonal symmetry.
采用完全对角化方法,讨论了三角对称和四角对称下d3离子自旋二重态和自旋四重态对基态4A2(4F)自旋哈密顿(SH)参量(包括零场分裂(ZFS)和g因子)的影响机理。
3) bidiagonalization Lanczos method
双对角化Lanczos方法
1.
Implicitly restarted upper and lower bidiagonalization Lanczos methods are the main methods for computing partial singular value decomposition.
隐式重新启动的上、下双对角化Lanczos方法,是计算大规模矩阵部分奇异值分解常用的方法。
4) algebraic diagonalization method
代数对角化方法
1.
But recently some people presented a new algebraic diagonalization method.
最近有人提出一种新的代数对角化方法。
5) pseudodiagonalization
伪对角化方法
1.
Based on the traditional pseudodiagonalization,robust pseudodiagonalization is presented;necessary and sufficient condition for achieving robust diagonal dominance is deduced.
在传统的伪对角化方法的基础上,提出了鲁棒的伪对角化方法,并研究了系统鲁棒对角优势的实现条件。
6) exact diagonalization method
准确对角化方法
补充资料:公理化方法(见公理化和形式化)
公理化方法(见公理化和形式化)
axiomatical method
gongllbuafangfa公理化方法化和形式化。(axiomatieal method)见公理
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条