1) Bi-conjugate gradients stabilized method
双共轭梯度稳定解法
2) biconjugate Gradients Stabilized method
稳定化的双共轭梯度法
3) bicgstab
稳定双共轭梯度
1.
As stabilized biconjugate gradient(bicgstab)of krylov subspace iterative method in solving large and sparse coefficient linear systems are stable, have fast convergence and high accuracy, it can improve the efficiency to solve linear equations compared with ilu precondioner.
用求解大型稀疏方程组的Krylov子空间方法中的稳定双共轭梯度(Bicg-stab)方法,收敛速度快,精度高,而且稳定性好,结合ilu预处理技术,可以大大提高求解大型稀疏方程组的效率。
4) stabilized biconjugate-gradient
稳定型双共轭梯度
1.
A hybrid implementation of a novel scattering approximation-diagonal tensor approximation(DTA) with the stabilized biconjugate-gradient fast Fourier transform(BCGS-FFT) algorithm for integral equations was developed to improve the efficiency for accurate simulating electromagnetic scattering of 3-D inhomogeneous objects in horizontally stratified medium.
为提高水平层状介质中三维异常体的电磁波散射精确数值模拟的效率,提出了一种将求解积分方程的对角张量近似(DTA)和稳定型双共轭梯度快速Fourier变换(BCGS-FFT)混合应用的算法。
5) preconditioned bi-conjugate gradient stabilized(BiCGSTAB) algorithm
预处理稳定双共轭梯度法
6) bi-conjugate gradient algorithm
双共轭梯度算法
补充资料:共轭梯度法
又称共轭斜量法,是解线性代数方程组和非线性方程组的一种数值方法,例如对线性代数方程组
A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
(k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
(k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
参考书目
冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
(k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
(k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
参考书目
冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条