1) Simple Weight Adding
一般线性加权法
2) general linear methods
一般线性方法
1.
The stability of general linear methods for a nonlinear multi-delay differential equation;
一类非线性多延迟微分方程一般线性方法的稳定性
2.
It is shown that (k,p,0)-algebraically stable general linear methods,under some restrictions,preserves the analogous stability of the original differential equations.
本文研究一类非线性中立型延迟微分方程一般线性方法的数值稳定性。
3.
This paper is devoted to studying stability of general linear methods for delayed differential equations with a variable delay satisfying Lipschitz condition with the minimum Lipschitz constant L<1,and obtains some nonlinear stability results on general linear interpolation methods.
讨论非线性变延迟微分方程初值问题一般线性方法的稳定性。
3) general linear method
一般线性方法
1.
We can define the different general linear methods under the different choices of internal vector with the same hybrid method , thus , the algebraic stability of hybrid methods is dependent on the choice of internal vector.
同一混合方法,在内向量的不同选取下,定义了不同的一般线性方法,因而它的代数稳定性是与内向量选取有关的。
4) linear weighting method
线性加权法
1.
The solution algorithm based on linear weighting method is proposed in this paper.
设计了基于线性加权法的模型求解算法。
2.
It is the combinaltion of constraint and linear weighting methods, that a new method is proposed to solve multi-objective optimization problems.
建立了哈尔滨市地下水资源优化管理模型 ,将求解多目标最优化问题的约束法和线性加权法相结合 ,给出了一种综合解法 ,并将此法应用于所建立的水资源优化管理模型的求解。
5) weighted linear method
线性加权法
1.
Based on the projection grads method, multi-index amalgamation optimization of redundant robot is researched through the weighted linear method.
以梯度投影法为基础 ,采用线性加权法 ,研究冗余度机器人的多指标融合优化问题 ,最后给出了仿真结果 。
6) weighted sum approach
线性加权法
1.
This paper introduces a new algorithm based on WSTPEA,which is built upon the concepts of weighted sum approach to simplify the multi-objective problems.
本文介绍了一种基于变权重线性加权的Pareto轨迹法WSTPEA---Weighted Sum Approachand Tracing Pareto Method),算法采用线性加权法对多目标优化问题加以改造,通过对权重加一个增量来得到邻近的非劣解,每执行一个循环步骤求得一个非劣解。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条