说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 层合压电圆柱壳
1)  multi-layered piezo-electric cylindrical shell
层合压电圆柱壳
2)  laminated piezoelectric cylindrical shell
压电层合圆柱壳
3)  laminated cylindrical shell
层合圆柱壳
1.
The vibrating modal analysis of axisymmetrical laminated cylindrical shells with throughout circumference delamination is investigated.
对具环向贯穿脱层的轴对称层合圆柱壳进行振动模态分析。
2.
Based the nonlinear elastic shell theory, the governing equations of motion for axisymmetrical laminated cylindrical shell with delamination were derived.
基于非线性弹性壳理论,建立了考虑脱层接触效应的具轴对称脱层层合圆柱壳的运动控制方程。
3.
The goveming equations for dynamic response of laminated cylindrical shells with orthotropic layers are derived by use of layerwise shell theory, with quadratic interpolation function adopted in shell thickness direction.
应用分层壳理论并在壳厚方向采用二次插值函数推导出正交层合圆柱壳的动力学方程,并得出了简支层合圆柱壳自由振动方程的解,所给出的振动频率与三维分析的结果吻合良好。
4)  laminated circular cylindrical shell
层合圆柱壳
1.
The critical buckling loads of viscoelastic laminated circular cylindrical shells under axial compres- sion are investigated within the theory of classic buckling.
基于经典屈曲理论,研究了轴向受压黏弹性复合材料层合圆柱壳的临界屈曲载荷。
5)  closed laminated piezoelectric cylindrical shells
压电层合闭口柱壳
1.
Exact solutions for closed laminated piezoelectric cylindrical shells with arbitrary thickness;
任意厚度压电层合闭口柱壳的精确解
6)  stiffened laminated shells
加筋层合圆柱壳
1.
The dynamics equations of viscoelastic stiffened laminated shells were deduced by means of the mixed layerwise theory and Ressiner′s mixed variational theorem,in which quadratic functions for displacement and three-order or four-order functions for transverse stress in the shell-thickness direction were adopted.
采用混合分层理论和Ressiner混合变分原理,在壳的厚度方向取二次插值函数来描述位移沿厚度方向的变化规律;采用三次和四次插值函数来描述横向应力沿厚度方向的变化,线形处理筋条的变形,推导出粘弹加筋层合圆柱壳的动力学方程和协调方程组,并采用拉普拉斯变换,得出简支粘弹加筋层合圆柱壳稳态振动的响应解。
补充资料:纵向磁场中的单层空心超导圆柱体
纵向磁场中的单层空心超导圆柱体

(singlehollowsuperconductingcylinder(SSC)inalongitudinalmagneticfield)

平行于柱轴(纵向)磁场H0中的单层空心超导长圆柱体(SSC)是复连通超导体。设柱体内外半径分别为r1,r2(r1<r<r2),厚度d=r2-r1,ζ=r/δ,Δ=d/δ,δ=δ0/ψ,δ0,ψ分别为大样品弱场穿透深度和有序参量。由GL理论,徐龙道和Zharkov研究了一系列物性,其中对厚壁样品,磁场难于透入中空部分而只存在原有的量子化冻结磁通。对`\zeta_1\gt\gt1`和$\Delta\lt\lt1$的薄壁样品,腔内磁场H1和样品磁矩M分别为:

$H_1=\frac{H_0 (n\phi_0//\pir_1^2)\zeta_1\Delta//2}{1 (\zeta_1\Delta//2)}$

$M=-\frac{r_2^2\zeta_1\Delta(H_0-n\phi_0//\pir_1^2)}{8[1 (\zeta_1\Delta//2)]}$

这里n为磁通量子数,φ0=h/2e=2.07×10-15Wb。是磁通量子,h和e分别为普朗克常数和电子电荷量。若原先空腔中无冻结磁通(n=0),则腔中磁场是外场H0穿透进入。若$\zeta_1\Delta\lt\lt1$,则H1≈H0,磁场可几乎全穿透到空腔。薄壁不起屏蔽磁场的作用。但若$\zeta_1\Delta\gt\gt1$,则H1≈1,所以虽然$d\lt\lt\delta$,但外场仍难于进入空腔而被壁所屏蔽,称ζ1Δ/2为纵向外场中单层空心长圆柱体的屏蔽因子。对M也可作同样分析。与实心超导小样品类似(见“超导薄膜”),可用与ψ(对坐标的平均),H0,n,温度T和样品尺寸l有关的超导-正常两相吉布斯自由能密度之差$fr{F}(\psi,p)$用GL理论来进行研究分析相变行为及其他一系列物性,如各种临界磁场,临界尺寸等等。这里H0,n,T和l在$fr{F}$宗量中统一记写为p来表示。SSC系统的一、二级相变见图1。随着H0或T的增加,图线由1逐渐上升到4和5。图1(a)的1,2,3三曲线在ψ>0上存在$fr{F}<0$的极小值,超导态是稳态,在3与4曲线之间可有$fr{F}>0$和ψ>0的极小值(图中未画出),则超导态是亚稳的过热(sh)态。曲线4上有$fr{F}>0$,ψ>0的拐点,是超导态的过热边界。稍上,样品即跳跃到ψ=0的正常态或量子跃迁到不同n值的ψ>0的超导态。再往上,如图线5,$fr{F}$的最小值在ψ=0,样品完全处于正常态。相反过程,减小H0或T,图线由5的处于ψ=0的稳定正常态,并维持ψ=0到图线4,在图线3上,极大值在$fr{F}>0$和极小值在$fr{F}<0$与ψ>0处,此时ψ=0的正常态是亚稳的过冷(SC)态。继续减小H0或T,在极大值开始消失只存在极小值时,ψ=0的正常态是过冷边界。再往下,样品处于完全的超导态。由于有过热和过冷滞后现象,相变属一级相变。图1(b)则无滞后现象,相变属二级相变。

Arutunian和Zharkov在此基础上又细致地作了进深的一系列研究,例如所给出的图2(a),这里取T=0K的相干长度ξ0=1×10-7m,GL参量K=0.2,r1=6×10-7m,r2=8×10-7m,图中t=T/Tc,φa1=πr12H0/φ0,φtc表示在图1(a)上拐点所对应的量,用箭头所指表示,实线是过冷边界φsc,虚线是过热边界φsh,平方规律的包络线类同于图2(b)的块样品的热力学临界磁场Hc(T)的相图曲线,但图2(a)体现了外场穿透薄壁而形成磁通量子的跃入空腔的过程和滞后现象。又例如对二级相变的比热随外场和量子数n跃迁振荡情形见图3。图中$bar{c}=\Deltac//c_0$,Δc=cs-cn,c0=μ0Hcn2(0)/Tc,μ0为真空磁导率,Hcn(0)是T=0K时对应于n的热力学临界场,cs和cn分别是超导态和正常态的比热。图3(a)(实线)和(b)(虚线)分别是对应清洁和脏超导体薄壁样品的。在n超导态磁通跃迁进入n±1超导态过程中经历有正常态时,则进入n±1超导态称超导态的重入,或一般地进入正常态后又进入超导态也称超导态的重入。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条