1) homogeneous system of linear algebraic equaeions
齐次线性代数方程组
1.
Making use of the row action method with orthogonalization,the author put forward an iterative method to solve the fundemental system of solutions of arbitrary AX=0(A∈Rn×m) homogeneous system of linear algebraic equaeions,discussed its convergence and its computational complexity also,so its applied prospects and its intrinsic parallism.
利用正交化行处理法,给出了一个求解任意齐次线性代数方程组AX=0(A∈Rn×m)基础解系的迭代解法;分析了解法的收敛性和计算复杂度,探讨了解法的应用前景和内在并行
4) homogenous linear equations
齐次线性方程组
1.
Analysis technology of degrees of freedom of workpiece based on homogenous linear equations;
基于齐次线性方程组的工件自由度分析技术
2.
The judgment theorems for locating correctness were concluded by skillfully combining the solutions of homogenous linear equations with locating schemes.
建立了描述加工尺寸与应限制自由度之间关系的自由度约束原理;巧妙地将齐次线性方程组解的性质和工件的各种定位方案联系起来,提出了定位合理性的判定定理;最后提出了不合理定位方案产生原因的判定依据,以指导工艺人员能够合理地设计夹具。
5) homogeneous linear equations
齐次线性方程组
1.
A simple formulated solution of homogeneous linear equations;
齐次线性方程组的一种简捷的公式化解法
2.
It shows the proof of four points on a circle by the knowledge of determinant;the methods of resolving applied problems by theories about the solution of homogeneous linear equations;and the proof of inequality by positive definite and positive semi-definite matrix.
讨论利用行列式知识证明四点共圆、利用齐次线性方程组解的理论解有关应用题、利用正定与半正定矩阵知识证明不等式等高等代数方法在中学数学中的应用。
补充资料:非线性代数方程组数值解法
非线性代数方程组数值解法
numerical solution for system of nonlinear algebraic equations
k=2,3,二’式中久二f【几,几一1〕+f【xk,几一1,xk一2〕(x。-xk_l),“士”号选取与久同号,f〔·,门,f〔·,·,·〕分别表示了(x)在相应点的一阶与二阶差商,抛物线法每步也只算一个新函数值f(xk),其收敛阶为P二1.839..·,效率比割线法又有提高,且可求方程的复根,因此也是非线性方程数值解的常用算法。 科学和工程计算中经常用到非线性方程和方程组数值解法,如在各种非线性力学问题、电路问题、经济平衡问题、非线性规划以及非线性微分方程数值解法中都要用到。·182·非习卜其中式中矩阵A(护,矿)的元素〔A(犷,矿)]。二人(护十砧ej)一关(犷) 心(i,,=1,2,…,,),其中ej为(一X(一X﹄fl一口几一aa一刁一)旦工互宜立l二LJ劣」刁几(xk) 日x,是了(犷)的雅可比矩阵。当x0是解x“的一个较好近似时,牛顿迭代序列(4)是2阶收敛的。由犷计算*1的步骤为:①计算f(/)及:黔」。②用直接法解线性方程组{碧」、一f(/),称为牛顿方程。③计算砂+1二犷十△尹。编程上机计算到}}扩一护+l}}簇。,或}}了(犷)}}(。停止,其中。为给定精度。牛顿法的优点是收敛快且可以自*丫,上。二止二比,.二LI.,「af(扩)1一华l多」J二,叫仄J际人不巨下牙兰夕3丈卜.J子丁比川L妇尸于l一气万一{,J一了F L口XJ坐标向量,矿=(哟,…,磷)T,这个方法具有超线性敛速,当矿=f(犷)=(fl(犷),…,几(尹))T时,公式(7)称为牛顿一斯蒂芬森方法,它具有2阶敛速。 在牛顿法(4)中,若解牛顿方程组不用直接法,而采用解线性方程组的迭代法,则得一类非线性与线性的双重迭代法,这类方法常用牛顿一SOR迭代法。此外,还可将解线性方程组迭代法思想用于解非线性方程组,得到一类非线性松弛法,如以〕R一牛顿法,这类方法优点是程序简单,存储量省,但收敛较慢。 拟牛顿法是一类不用计算f(x)的雅可比矩阵,又具有超线性收敛的算法。它是60年代中期出现的新算法,有很多不同的计算公式,其中常用的秩1拟牛顿法是布岁依登法,其计算公式为: 犷十‘=护一A石丫(犷)量为w二铲+n。另外,要求x0在解x,附近较难达到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条