说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 海洋大气重力信号
1)  oceanic loading signal
海洋大气重力信号
2)  atmosphere-ocean dynamics
大气-海洋动力学
3)  marine gravity
海洋重力
1.
The study of high precision interpolation technology in marine gravity anomaly;
高精度海洋重力异常格网插值技术研究
2.
The traditional least-square adjustment method available for marine gravity and magnetic track-line data are often designed only for the regular survey network.
传统实用的海洋重力、磁力测线网平差方法主要为规则测线网设计,并只就线偏差进行调整,用于处理航次数据之间的拼接时效果不理想。
3.
Prince and Forsyth (1984) presented a simple objective method for minimizing crossover errors in marine gravity data.
基于工程化应用的需要 ,对笔者原来提出的两种海洋重力测量误差补偿方法进行了简化 ,把原来严密的自检校平差简化为两步处理法 ,并深入分析了简化方法的技术特点和适用范围。
4)  marine atmospheric
海洋大气
1.
In this work, electrochemistry method and slow strain rate test (SSRT) were used to investigate the effect of marine atmospheric environment on hydrogen permeation of steels.
本文通过电化学研究方法及慢应变速率拉伸试验(SSRT)研究了从实验室模拟到实际海洋大气环境中,海洋大气对材料渗氢性能的影响及对材料应力腐蚀敏感性的影响,特别是在硫化氢及二氧化硫存在的条件下的影响。
5)  marine atmosphere
海洋大气
1.
Study on methane sulfonic acid particles in the marine atmosphere of Macao Island.;
澳门岛海洋大气中甲磺酸粒子的研究
2.
Monitoring of corrosion rate of steels in marine atmosphere by hydrogen permeation current investigation
氢渗透电流法监测海洋大气中钢材的腐蚀速率
3.
Its corrosion inhibition effect and mechanism for carbon steel and brass under marine atmosphere were studied by weight-loss measurement, weak polarization curves, Tafel curves and electrochemical impedance spectrum.
采用失重法、弱极化曲线法、Tafel曲线法和交流阻抗技术研究了其在海洋大气下对碳钢和黄铜的缓蚀性能。
6)  ocean atmosphere
海洋-大气
补充资料:海洋重力异常
      地球海洋表面任意测点上的观测重力值在引入必要的校正后,同该点正常重力值之偏差。它反映出海底之下不同密度的质量的分布特征。由于引入校正的形式和内容不同,对应地有不同名称不同意义的重力异常。
  
  正常重力值  把地球近似地看作表面光滑、内部质量分布均匀、赤道半径大于极半径的旋转椭球体。椭球体表面上各点的重力值称正常重力值或理论重力值,其计算公式称为正常重力公式。目前,国际上通用两个正常重力公式。① 1901~1909年引入的黑尔默特公式:γ 1901=978030(1+0.005302sin2φ-0.000007sin22φ,式中υ表示正常重力值,单位为毫伽(10-3伽);φ为计算点的地理纬度。
  
  ② 1930年确定的正常重力公式,称卡西尼公式:γ1930=978049(1+0.0052884sin2φ-0.0000059sin22φ)。根据人造地球卫星测定的地球形状和重力数据,国际大地测量和地球物理学联合会先后几次推荐新的正常重力公式。由于采用的正常重力公式不同,同一点上的重力异常数值也不同。
  
  海洋重力校正  将地球表面任意点上的观测重力值归算到该点大地水准面上,这种换算方法统称重力校正,也称重力归算。
  
  ① 自由空间校正 (δgF)。地表测点的观测重力值归算到高程起算零点的大地水准面或海平面上的校正项,称自由空间校正,或以提出这个方法的法国天文学家H.法耶命名,称为法耶校正。船上重力仪测量时,观测值几乎是海平面上的值,一般不再引入这项校正。
  
  ② 布格校正(δgB)。法国大地测量学家 P.布格1735~1741年间提出并运用的一种重力校正方法,后人称作布格校正。它的含意是从测点观测重力值中去掉测点水准面与海平面之间这层物质(中间层物质)的引力,然后再引入自由空间校正。海上布格校正的意义为填补海水层(密度为1.03克/厘3)相对中间层物质的质量不足。常取中间层物质密度为2.67克/厘3,这时海上布格校正δgB=0.0687H(毫伽),H为测点水深,以米为单位。
  
  ③ 地形校正。不论陆地,还是海底,测点或测点对应的海底点附近的地形总是高低起伏的。高于测点水准面的多余物质和低于测点水准面的"短缺"物质都会使该点观测重力值减小,为此而引入的校正称局部地形校正(δgd)。它总为正值,相当于把测点水准面上下的盈亏质量"削平补齐"。对海底地形切割剧烈的海区可参照陆上地形校正方法进行,尔后再引入布格校正。常将布格校正扩展到全球范围,即去掉整个地球的海平面以上地形质量和海平面与海底间水层亏损质量的引力效应,这时称全地形校正(δgn)。
  
  ④ 均衡校正 (δgJ)。"均衡"一词源出希腊文,意指相同的状态或相等的压力。大地测量和重力测量的结果表明,地壳均衡的现象是普遍存在的。均衡校正分两步进行:先进行全地形校正,再计算这部分物质沿垂直方向均匀充填到均衡补偿面,即所谓补偿质量所产生的引力效应(称补偿校正δgc),然后加到观测重力值中去。这两个步骤合称地形 -均衡校正。计算均衡校正时,不同的均衡假说有不同的均衡模式和公式,或按均衡密度差(普拉特假说),或按均衡深度差(艾里假说)引入校正。
  
  重力异常  几种海洋重力异常表达式为:
  
  ① 自由空间异常(ΔgF)
  
   ΔgF=gH0
  式中gH经过零点漂移校正,厄特渥斯校正后以绝对值表示的观测重力值;γ0为正常重力值。
  
  ② 布格异常(ΔgB)
  
   ΔgB=ΔgF+0.0687H
  
  ③ 均衡异常(ΔgJ)
  
   ΔgJ=ΔgF-δgD+δgC
  
  以上三种异常是可以相互换算的。简单说来,海上自由空间异常客观地反映出海洋表面重力异常场的特征,但它对海底地形变化极为敏感;布格异常表征着海洋地壳的物质组成相对于平均地壳密度的差异;均衡异常反映了由于地壳运动产生的对静力平衡的偏离,研究均衡破坏可以了解地球内部发生的动力作用,并获得有关新构造运动的信息。均衡异常值介于自由空间异常和布格异常值之间。在大洋盆地区,一般近似地将自由空间异常视作均衡异常。
  
  一般特征  尽管目前世界海洋的重力测量覆盖程度很不平衡,但从已有的调查成果看,海洋上重力异常场的空间展布有着特定的规律性。对应于不同的地质构造单元和海底地貌单元的异常呈现出各自的特征。①大洋盆地。自由空间异常表现为相当平静的、幅度不大而异常值接近于零的特点;布格异常为+250~+400毫伽的高值。②大洋中脊。ΔgF幅度不大,约为+20~+40毫伽,而ΔgB 相对两侧洋盆区有明显下降。③火山岛链。清楚地呈现高达+100~+200毫伽的空间异常带。夏威夷群岛的瓦胡岛,其上ΔgF值竟高达+700多毫伽,表明这里地壳的不均衡。④海底高原。有着微弱的正空间异常,布格异常也较洋盆区低。⑤岛弧海沟系。这里的重力剖面显示出ΔgF、ΔgB和ΔgJ的剧烈变化。如从日本岛弧到太平洋,ΔgB从-28毫伽剧增到+450毫伽,ΔgF由+140毫伽降到海沟处的-310毫伽,部分地段重力水平梯度高达4~5毫伽/公里。深海沟对应着一条-200~-240毫伽的空间异常带和负均衡异常带。波多黎各海沟的ΔgF为-350毫伽,是目前发现的海上最低值。⑥被动大陆边缘。由大陆向大洋过渡,自由空间异常由正(+50~+70毫伽)变为负值(-50~-100毫伽),而布格异常由弱至强,以密集的重力梯阶带出现。⑦大陆架区。ΔgF和ΔgB都具有幅度不大(-30~+30毫伽),波长较短的特点,反映着复杂的海底密度差异。
  
  地质解释  根据海上重力异常的分布规律,运用位场理论,揭示引起异常的地质因素以及两者间的内在联系,进而利用这种联系去解决海洋地质学的问题,这个阶段称为异常的地质解释。海上重力异常通常为以下几种地质因素引起的:①沉积层的厚度变化和纵、横向密度差异;②结晶基底面的起伏或内部的结构分异;③莫霍面的起伏和上地幔的侧向密度不均匀等。
  
  对异常解释时运用从已知推未知、由陆及海,几种资料相互综合的原则,具体的分析引起异常的地质因素。同时,可辅之以定量计算。普遍采用的计算方法是最优化选择法。它根据海上地震测量资料和地震波速度同岩层密度的相关关系,建立地壳剖面的密度模型,计算它的重力效应;通过不断修正模型参数(层的厚度、产状及密度值),使计算异常值与实测异常值很好吻合,这样的模型视作异常的最佳解。
  
  由于解决的地质任务不同,对异常解释和处理的方法也不尽相同。如:为了阐明海区含油沉积盆地的规模和次级构造区划,应引入区域校正,消除深部因素的效应;逐层"剥离"沉积岩层的重力影响后,得到的深部重力异常可用于估算莫霍面的深度和上地幔测向密度差异;与地震、地磁、热流资料相结合,可提高确定异常源属性的可靠性等。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条