1) Euclid geometry
欧几里得几何
1.
Euclid geometry is the first system of Axiomatizing and non-Euclid geometry causes the strict examination to Euclid geometry.
欧几里得几何是第一个公理化体系,非欧几何的出现促使人们对它的基础作了严格审视,其中希尔伯特公理化方法最为成功;但它的相容性问题一直没有解决,集合论悖论使得这个问题更加尖锐。
5) non-Euclidean geometry
非欧氏几何学;非欧几里得几何学
6) Euclid
[英]['ju:klid] [美]['juklɪd]
欧几里得
1.
The algorithm is based on a modification of Euclid s algorithm.
在扩展欧几里得算法的基础上提出了有限域乘法逆元的计算方法。
2.
The development of calculus was based on not very strict but practical thought instead of Euclid s strict thought.
微积分是在不很严格、讲究实用的基础上 ,而不是在欧几里得严密思想的基础上发展起来的 。
补充资料:欧几里得几何
简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里得把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条