说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> "原位"发射红外光谱
1)  in situ emission IR
"原位"发射红外光谱
1.
In this paper,the reaction processes of CO+H2 and CO+H2+CO2 over Cu-ZnO-Al2O3(La) catalyst were traced dynamically by using in situ emission IR technique at the reaction conditions of 280℃ and 0.
本文应用“原位”发射红外光谱技术,在280℃,0。
2)  FTIR emission spectroscopy
原位红外发射光谱
3)  in situ DRIFTS
原位漫反射红外光谱
1.
In situ diffuse reflectance Fourier transform infrared spectroscopy(in situ DRIFTS) investigation of N_2O and benzene adsorption on Fe-ZSM-5 zeolite;
原位漫反射红外光谱法研究N_2O和苯在Fe-ZSM-5分子筛表面的吸附
2.
The Surface Adsorption and Selective Catalytic Reaction of NO on Cu-ZSM-5 Using In situ DRIFTS;
原位漫反射红外光谱(Insitu DRIFTS)是研究催化剂表面吸附物种及催化机理的重要方法,应用该方法在298~773K范围原位考察了以C3H6为还原剂及富O2条件下,NO在Cu-ZSM-5催化剂上的表面吸附及选择性催化还原。
4)  in situ diffuse reflectance infrared fourier transform spectroscopy
原位漫反射红外光谱
1.
The effect of H2 on the selective catalytic reduction (SCR) of NOx by C3H6 was investigated over Ag/Al2O3 and Cu/Al2O3 catalysts by steady in situ diffuse reflectance infrared Fourier transform spectroscopy.
原位漫反射红外光谱分析表明,在Ag/Al2O3催化剂上,H2的存在促进了C3H6部分氧化产物烯醇式物种(RCH=CH-O-)和乙酸盐等的形成,烯醇式物种和硝酸盐为主要反应中间体,二者间的相互反应性能很强,能形成高浓度的反应关键中间体异氰酸酯(-NCO)表面吸附物种,因此NOx的去除活性提高;而在Cu/Al2O3催化剂上,H2的存在并没有促进C3H6部分氧化产物的形成,而且抑制了硝酸盐的形成,进而抑制了C3H6部分氧化产物与硝酸盐反应形成表面-NCO物种,导致NOx的去除活性降低。
2.
Both the NO and N2O adsorption behaviors over Fe-ZSM-5 zeolite prepared by ion-exchanged and the NO assisted mechanism to N2O decomposition were studied by in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS).
利用原位漫反射红外光谱法考察了NO和N2O在液相离子交换法制备的Fe-ZSM-5分子筛上的吸附行为,并对NO助N2O催化分解的机理进行了研究。
5)  in situ FTIRS
原位红外反射光谱
6)  In-situ IR reflectance spectroscopy
原位红外反射光谱法
补充资料:红外光谱
红外光谱
infrared spectra

   以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。
   量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。
   
   

非线性3原了分子的3种简正振动模式

非线性3原了分子的3种简正振动模式


   
   研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。
   红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条