1) fixed point theorem on cone
锥上的不动点定理
2) fixed point theorem in double cones
双锥上的不动点定理
3) fixed point theorem of cone
锥上不动点定理
1.
Using the fixed point theorem of cone expansion and compression of norm type, the existence of multiple C1 [0, 1] positive solutions are given to singular three-point boundary value problems of a class of second order differential equations whereη∈(0, 1) is a constant,λ1∈(0, 1),λ2∈(1,∞),α∈C((0, 1), [0,∞)).
应用锥上不动点定理,给出了二阶三点奇异边值问题至少有两个C1[0,1]正解的存在性。
4) fixed-point index theorem
锥上不动点指数定理
5) Krasnoselkii's fixed point theorem in cones
锥上Krasnoselkii's不动点定理
6) fixed point theorem in cones
锥不动点定理
1.
It is proved that such a problem has at least two nonnegative T-periodic solutions by using fixed point theorem in cones under our reasonable conditions.
并利用锥不动点定理证明了在适当的条件下这个问题至少存在两个解。
2.
Existence is established using a fixed point theorem in cones.
研究了Logistic差分方程单个和多重周期正解的存在性理论,利用锥不动点定理证明了解的存在性,并应用本文的理论验证了一些生物数学模型。
3.
The existence of the first solution is obtained by using a nonlinear alternative of Leray-Schauder,and the second one is found by using a Krasnoselskii fixed point theorem in cones.
第一个正解的存在性是利用非线性L eray-Schauder抉择定理得到的,第二个解是利用K rasnoselsk ii锥不动点定理得到的。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条