1) odd composite number
奇合数
1.
This article ,according to the arithmetical basic theorem, presents the set of odd composite numbers sequential structure and studies the ratio of aggregates about the odd composite numbers to the set of the odd number.
根据算术基本定理,给出了奇合数集的序列结构并讨论了奇合数的构成。
2) singular blending function
奇异混合函数
1.
A kind of interpolation surface,which can interpolate the given data points,is constructed in this paper,using the singular blending function to blend the bieubic B-spline surface patches with an imaginary surface patch.
利用奇异混合函数将双三次B样条曲面与虚拟曲面片作混合,构造一类可插值给定数据点的插值曲面,该类曲面在边界处可达到C~2连续,参数α可对曲面片整体形状进行调控。
3) the disassemble of odd composite number
奇合数的分解
4) odd electron compound
奇数电子化合物
5) Odd number
奇数
1.
Let p>q and q be an odd number,We discuss the condition of no positive integer solution for the Generalized Fermat equation x~p+y~q=z~q.
当p>q,且q为奇数时,探讨广义Fermat方程xp+yq=zq无正整数解的条件,并提出一个猜想。
2.
By the resolution of a mathematical problem,this paper carries out a further research of using property of the even number and odd numbers to get the relevant theorem of resolve this problem,and explain concrete application by an example.
通过一个数学问题的解决,由此提出了进一步研究的问题,利用奇数与偶数的有关性质,得到了解决这一类问题的有关定理,并且通过例子说明了定理的具体应用。
3.
Here r is not a negative whole number,h,x are odd numbers and h>0 .
断定,当n=2r+1 -1时,若{x+1}2 =m,那么对于s(x) =∑ni=0xi就有{s(x)2 } =m+r成立,此处r是非负整数,x≠±1;当n=2r+1h-1时,若{x+1}2 =m,那么对于s(x) =∑nxi就有{s(x) } =m+r成立,此处r是非负整数,h,x为奇数,且h>0。
补充资料:缔合数
分子式:
CAS号:
性质:不引起化学性质改变的同种分子间的可逆结合称缔合,一个缔合体所含分子数称缔合数。
CAS号:
性质:不引起化学性质改变的同种分子间的可逆结合称缔合,一个缔合体所含分子数称缔合数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条