1) anti-kink solution
反扭子波解
2) anti-kink wave solution
反扭波解
1.
Exact explicit parametric representations of kink and anti-kink wave solutions,periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.
Wadati提出的一类可积非线性发展方程的精确行波解,获得了该方程的扭波、反扭波解,周期波解和不可数无穷多光滑孤立波解的精确的参数表达式,以及上述解存在的参数条件。
2.
By using the theory of bifurcations of dynamical systems to a system of coupled nonlinear equations,kinkwave solutions and anti-kink wave solutions are obtained.
应用动力系统分支理论对一类耦合非线性微分方程进行研究,给出在各种参数条件下系统的相图分支及可能存在的孤立行波解、扭波解、反扭波解的精确公式。
3) kink wave solutions
扭子波解
1.
Under various parameter conditions,all explicit formulas of solitary wave solutions and kink wave solutions are obtained.
用动力系统分支理论研究了Gardner方程,给出了分支参数空间以及许多孤立波解,扭子波解,在各种参数条件下,得到了所有显式的有界的精确的孤立波解和扭子波解。
4) kink and anti-kink wave solutions
扭子和反扭子波
1.
By using the theory of bifurcations of dynamical systems to a model of the helix polypeptide chains, the existence of solitary wave, kink and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions is obtained.
利用动力系统的分支理论对一类多肽链模型进行研究,本文获得该模型存在光滑孤立波,扭子和反扭子波,不可数无穷多的周期波,光滑和不光滑周期解。
5) kink and anti-kink wave solution
扭结和反扭结波解
1.
By using the bifurcation theory of dynamical systems to third-order nonlinear Schrdinger equation,the smooth solitary wave solutions,kink and anti-kink wave solutions and periodic wave solutions are obtained.
证明了该方程存在光滑孤立波解、扭结和反扭结波解和光滑周期波解。
6) kink wave solution
扭波解
1.
By finding parabola solutions to a planar dynamical systems connecting two equilibrium points, the existence of the kink wave solutions and their exact parametric representations are obtained for a Type of Nonlinear Evolution Equation.
根据平面动力系统的分支理论 ,在平面动力系统具有两个平衡点的条件下 ,求出了它的抛物线解 ,由抛物线解的存在性 ,在不同的参数条件下 ,得到了一类非线性发展方程的 6类扭波解的精确参数表示 。
2.
Exact explicit parametric representations of kink and anti-kink wave solutions,periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.
Wadati提出的一类可积非线性发展方程的精确行波解,获得了该方程的扭波、反扭波解,周期波解和不可数无穷多光滑孤立波解的精确的参数表达式,以及上述解存在的参数条件。
3.
By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations was shown.
通过求解与平面动力系统的两个平衡点相连接的抛物线解,获得了6种非线性行波方程的扭波解存在条件,并给出了这些扭波解的参数表达式,以及上述解存在的参数条件
补充资料:扭解
1.拘捕押送。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条