说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 强保ρ映射
1)  strongly distance-p preserving mapping
强保ρ映射
2)  distance-p preserving mapping
保ρ映射
3)  strongly distance-a preserving map
强保a映射
4)  strong distance one preserving map
强保1映射
5)  strong commutativity preserving map
强保交换映射
6)  parabolic starlike mappings of orderρ
ρ次的抛物星形映射
1.
Among which parabolic starlike mappings can be inte-grated in the parabolic starlike mappings of orderρ, parabolic and spiralike mappings oftypeβcan be integrated in parabolic and spiralike mappings of typeβand orderρ, andthe former three types of mapping can be unified in parabolic and spiralike mappings oftypeβand or.
本文中,我们分别在C~n、复Hilbert和复Banach空间中研究了:抛物星形映射、ρ次的抛物星形映射、抛物形的β型螺形映射和ρ次的抛物形的β型螺形映射。
补充资料:保角映射


保角映射
Conformal mapping

因为若wl=az,+夕,wZ=azZ+夕,则wZ一wl=a(22一21),于是IwZ一wl}=!a}·122一z,};又arg(w:一wl)=arga+arg(22一21),每一条线段旋转了角度arga。 变换W一告,此处*表示2的共、,实质上保合时一夕y尹。只不过是为了保证分式不会恒等于常数。立即可以证明,这个变换在扩充平面上是一对一的。这种变换的重要性质之一是使任何四个不同点的交比保持不变。如果这些点是21,22,23,z‘,其交比定义为l一22)(23一24):一23)(z‘一z,)。(4)(z一(z(21,22,z。,z;)当其中一点在无穷远处时,则给以适当的约定;若像点是、1,w:,二3,二;(其中任何一个可以在无穷远处)w;),只要直接加以验证即可证明(wl,,2,、3,=(21,22,23,24 如果四个点位于同一圆上,它们的交比是实的,如下式所示:之4一之1之4一之3=0或,。(5) g r a 一Z一Z2一Z g r a图2一个逆保角变换证了二g切一g一,W,一街(图2,。这个变换不是由z的解析函数定义的,因此不是保角的。但是这个变换等价于连续进行两个变换Z,一*,W一奋。第一个变换仅仅是平面绕x轴旋转180。,它使所有的角在数量上保持不变但方向相反,因此是逆保角的;第二个变换是保角的。于是W一告(叫做对于单位圆的反演)也是逆保角的;除了z一。与w一o没有像外,它在整个z平面与w平面之间是一对一的.为要避免这些例外,通过在“无穷远处”引进理想的(或虚构的)点z一co,w~二,可以将平面加以“扩充”。当z接近于零时,w就远离w~。;所以w一co可以认为是z一o的像,且w一。可以认为是z~co的像。有了这样的约定,在扩充平面上,变换就是一对一的。在无穷远处曲线间的夹角,可以通过研究当一个交点无限远离时弦的极限来引进.,或者通过以球面上的一点为投影中心,将平面球极投影到球面上(此处平面上的无穷远点投影到投影中心)来引进。无论刀。一种情形,在变换?一告,?一音之下,即使在无穷远处的角在数值上不变这一点也是真实的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条