说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 数据共享机制
1)  Data share mechanism
数据共享机制
2)  data sharing
数据共享
1.
Quick response system for textile & apparel supply chain based on XML data sharing;
基于XML数据共享的纺织服装供应链快速响应系统
2.
Studies on the scientific data sharing with the Web services technology;
基于Web Services技术的科学数据共享研究
3.
Framework and realization of water scientific data sharing network;
水利科学数据共享网的构架与实现
3)  data share
数据共享
1.
Application of Web feature service-based data share to earthquake disaster reduction;
基于WFS的空间数据共享在地震减灾中的应用
2.
Research of Distributed Spatial Data Share Platform Based on Jabber;
基于Jabber的分布式空间数据共享模型研究
3.
Net-connection and data share between large-scale computers IBM and SGI;
IBM和SGI大型处理计算机网络连接与数据共享
4)  data-sharing
数据共享
1.
The data-sharing of the Linux multi-proccess running;
Linux多进程运行的数据共享
2.
The data-sharing among threas is an important research topic.
多线程中的数据共享是一个重要研究课题,现给出了多线程之间处理数据的新模式,该模式的核心是:通过克隆线程的目标对象,使得多线程具有相同结构的目标对象却不共享目标对象的数据,这种新模式增强了利用多线程解决实际问题的能力。
5)  data shared
数据共享
1.
Realizing Mechanism of Data Shared Base On C++;
C++中数据共享的实现机制
2.
Research & realization on data shared of "digital basin;
“数字流域”中数据共享机制研究与实现
3.
If we have made the geologic data shared in the different of the hard wares and soft wares Working on each system and platfom, ,we should not only set up the collection and shared criterion of the data,but also resolve the problem of the different structure of the data,quickly update and maintain the bulky data,and keep on researching the Client/Sever, WebGIS and Browser/Sever.
地球科学数据共享是时代的需求,实现地球科学数据跨系统、跨平石在不同硬件、软件平台下共享,必须建立健全地球科学数据的采集标准、共享标准,必须解决地球科学数据的异构问题、海量数据的快速更新与维护技术以及研究C/S结构、WebGIS技术及 B/S结构的有机结合等难题。
6)  shared data
共享数据
1.
This paper gives reasons for the ping-pong effect of the high speed store-postponing shared data in multiprocessor systems and suggests using hardware and software to handle the ping-pong effect of the shared data in CACHE for the multiprocessor systems.
分析了多处理器系统中高速缓存共享数据乒乓效应的产生原因,并提出使用硬件和软件等方法处理多处理机系统的Cache中共享数据乒乓效应的几种对策。
补充资料:磁耦合机制和沙兹曼机制
      解释太阳系角动量特殊分布的两种理论。太阳质量占太阳系总质量的99.8%以上,但其角动量(动量矩)却只占太阳系总角动量的1%左右,而质量仅占0.2%的行星和卫星等天体,它们的角动量却占99%左右。太阳系角动量的这种特殊分布,是太阳系起源研究中的一个重要问题。1942年,阿尔文提出一种"磁耦合机制"。他认为,太阳通过它的磁场的作用,把角动量转移给周围的电离云,从而使由后者凝聚成的行星具有很大的角动量。他假定原始太阳有很强的偶极磁场,其磁力线延伸到电离云并随太阳转动。电离质点只能绕磁力线作螺旋运动,并且被磁力线带动着随太阳转动,因而从太阳获得角动量。太阳因把角动量转移给电离云,自转遂变慢了。
  
  1962年,沙兹曼提出另一种通过磁场作用转移角动量的机制,称为沙兹曼机制。他认为,太阳(恒星)演化早期经历一个金牛座T型变星的时期,由于内部对流很强和自转较快,出现局部强磁场和比现今太阳耀斑强得多的磁活动,大规模地抛出带电粒子。这些粒子也随太阳磁场一起转动,直到抵达科里奥利力开始超过磁张力的临界距离处,它们一直从太阳获得角动量。由于临界距离达到恒星距离的量级,虽然抛出的物质只占太阳质量的很小一部分,但足以有效地把太阳的角动量转移走。沙兹曼也用此机制解释晚于F5型的恒星比早型星自转慢的观测事实。晚于F5型的恒星,都有很厚的对流区和很强的磁活动,通过抛出带电粒子转移掉角动量,自转因而变慢。然而早于F5型的恒星,没有很厚的对流区,没有损失角动量,因而自转较快。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条